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Summary 

High strain rates in metallic materials are present in some engineering 
applications and designs subjected to sharply variable forces. In such situations, the 
load intensity may determine a stress state in excess to limit values. In non-linear 
analysis a constitutive material model is used as a simple approach an equivalent 
post-yield Young modulus. A simple and straightforward numerical model, based on 
finite element techniques was developed. The constitutive model deals with a smooth 
high order function to approach the evolution of the material behaviour. The 
numerical data was compared with the corresponding one from experimental tests 
carried out in a Split Hopkinson Pressure Bar (SHPB), an important experimental 
research tool in the assessment of the deformation rate of materials submitted to high 
speed impact loads. The main objective of this work was to simulate the wave 
propagation phenomena in the understanding of the experimental data. 

Introduction 

The fast rate deformation resulting from impulsive loads meet important 
applications in the design of metallic or advanced composite structural parts, where, 
the assessment of their behaviour can be investigated both with numerical [1] and 
experimental tools. A highly used experimental technique is based on the Hopkinson 
apparatus. This device has simple and straightforward features; however, the 
numerical modelling of its physical operating principle is very useful to understand 
the material behaviour during test. From simplest designs of the Hopkinson apparatus 
until more sophisticated set-ups, as the system used in the Large Dynamic Testing 
Facility (LDTF) of the Joint Research Centre (JRC) of Ispra (VA), Italy, worthy 
contributions for automotive structure design have been reported [2] using a large 
sized Hopkinson bar in the LDTF to evaluate the energy absorbing capacity of 
automobile sub-structure bodies under impact loads. This represented a considerable 
economy in the simulation of a crash test of the complete structure body. Another 
example of investigation on material behaviour under fast rate dynamic loads refers 
to the work of [3] in the assessment of concrete test-specimens under axisymmetric 
loads in a split-Hopkinson pressure bar. To obtain the material properties under high 
strain rates the simplest procedure generally consists on unidirectional tensile or 
compression tests. In this work an optimised design of a split Hopkinson pressure bar 
developed in LOME facilities was used to perform the experimental tests. Also the 
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stress wave propagation phenomenon is investigated with the use of special rod finite 
elements. The constitutive law for the material behaviour is assumed according to a 
gradual evolution from linear elastic to a post yield hardening. 

The modelling of stress wave propagation with FEM - Linear elastic materials 

The stress wave propagation along variable section rods is discussed using 
simple two-nodes finite rod elements. These elements allow a reasonably accurate 
stress wave simulation, even with plastic deformations. This numerical technique has 
received refinements to include contact interaction between two rods for linear elastic 
problems [4]. In the present work the material behaviour includes cases as the purely 
linear elastic (with a relative interest) and analyses involving a bilinear material 
behaviour. The formulation of the axial wave propagation phenomenon along straight 
homogeneous rods can be approached with a finite element model form the 
generalized dynamic equilibrium equation: 

[ ] [ ] [ ] )t(KCM FXXX =++  (1) 

where [M], [C] and [K] are, respectively, the mass, the damping and the stiffness 
matrices of a bar structure integrating a set of rod elements. If an external time 
dependent force F(t) strikes the bar, its particles move with the displacement vector 
X(t), the velocity  and the acceleration . For wave propagation analysis the 
damping effects are usually neglected. To define the numerical modelling of the 
propagation of axial waves along a bar this one is divided into a set of rod finite 
elements as the represented in Figure 1. 
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Figure 1: Rod finite element and shape functions 

Considering negligible the effect of the Poisson ratio in the transverse section, 
the stiffness matrix of a rod finite element is: 
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where E and A are the Young modulus of the bar material and the transverse area, 
while L is the element length as in Figure 1. The mass matrix considering a total mass 
lumping on both nodes of the element is: 
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where ρ is the specific mass of the bar material. Equation (1) is integrated in time, 
giving the structure deformation at every time step. Matrices [K] and [M] in (1) refer 
now to the assembled stiffness and mass distributions. The use of a lumped mass 
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distribution leads to relevant simplification in the time integration algorithm. The 
integration of equation (1) is efficiently carried out with the central difference method 
(CDM), better modelling the wave propagation phenomenon. The iterative algorithm 
is as follows: 
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where in (4), index k refers to the kth diagonal elements of [K] or [M], or to the kth 
element order in the displacement vector {Xi}. The operation with (4) needs that the 
time step ∆t must observe values not exceeding a critical one, ∆tcrit given by: 

ρ
Ec

c
Ltcrit ==∆ ;  where c is the velocity of sound in the bar material. (5) 

A hardening material with a bilinear equivalent behaviour 

The material behaviour can extend from the elastic-perfectly plastic until a 
bilinear equivalent material. The transition between the two constitutive states can be 
assumed continuous, where a smooth transition curve between the two young 
modulus slope, as in Figure 2(a), or joining two straight lines, as in Figure 2(b). To 
set-up a finite element solution dealing with a material non-linear problem, the 
following assumptions are useful: 
• The deformation field is based on small first order displacements; 
• The non-linear conditions for the solution come from the material change 

characteristics during the stress-deformation evolution; 
• The stresses are evaluated considering nominal values for the transverse section. 

This assumption is consistent with other, where the Poisson ratio of the material 
was considered ν=0, giving a negligible contribution to the transverse expansion. 
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Figure 2: Rod under an increasing tensile load followed of unloading (a) with smooth 
transition past elastic limit load and (b) with sharp bilinear behaviour. 
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The general iterative solution (4) must undergo modifications, once the material 
behaviour depends on each actual deformation state. For any node in the structure 
(exception made for the first and the last nodes in the bar arrangement), algorithm (4) 
is rewritten as follows: 
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In previous equation, with the structural contribution from a node k at time step i, the 
internal reaction vectors are identified as follows: 

)xx(
L

EA:R i
1k

i
k

lefti
k −−replacing  for internal reaction in element k-1 at left of node k; 

)ixx(
L
EA:R k

i
1k

righti
k −

− +replacing  for internal reaction in element k at right of node k 

Both internal reactions are algebraically added, for the joint contribution of 
elements converging at node k, excluding the first and the last node. The Young 
modulus is replaced for an equivalent constitutive function F, characterizing the 
internal reaction R for the material. This vector is evaluated in an incremental 
procedure, updating their values at each time step with use of algorithm (6). At each 
time step i, a new displacement vector is calculated and the internal reaction at each 
structure element k is updated after a deformation increment as follows: 
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 (7) 

F is a constitutive function defining the current material behaviour under deformation 
and it can involve geometric parameters (as the element length and transverse area) 
and equivalent Young modulus changing when a pre-defined stress state is reached. 

Example I – Bar with two sections changing abruptly 

To analyse the stress waves propagation of along variable section bars, some 
examples with elasto-plastic deformation rod elements are carried out and discussed. 
Example 1 consists in a two section bar submitted to a step load of 1000N at the left 
end. This load holds for 10 times the critical time step (∆tcrit = 10µs). 

1 2 3 4 5 .....(100 elements) 

F(t) 

 
Dimensions and mechanical properties: Length L=1m with section transition at 0.5 m; Transverse 
section: Alarger = 0.01m2; Asmaller = 0.005m2; Young modulus (homogeneous material) E=1×109 N/m2; 
Specific mass ρ =1000Kg/m3 

Figure 3: A two sections bar submitted to a step load at left end 
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The stress wave distribution is solved using algorithm (4). Past a time of 60×∆tcrit the 
stress distribution reveals a transmitted wave of 133kPa while a reflected wave of 
33kPa is generated. These results are confirmed by a theoretical analysis [5]. With a 
time step just equal to the critical value, the stress wave presents distribution, as 
shown in Figure 4.  
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 a) b) 
Figure 4: Stress wave distribution, in example 1 bar after 1100 µs past the impact, a) 

∆tcrit b) time step=0.995×∆tcrit. 

This is, however, an ideal situation, once real bars present oscillations due to the 
wave dispersion phenomenon. An approach to this fact can be modelled if a time step 
∆t slightly smaller than the critical value is chosen; for example ∆t =0.995×∆tcrit. 
Figure 5 presents the stress distribution for a case similar to the previous, but solved 
with a different time step. Here it is possible to obtain a distribution with some 
oscillations, better modelling the real behaviour of the structure. 

Example 2 – Numerical model of the Split-Hopkinson Pressure Bar (SHPB) 

This example models the set-up commonly known as SHPB. Essentially, two 
long bars contact the test specimen, as in Figure 6. The test specimen receives an 
incident wave; transmitting and reflecting it. 

1 2 3 4 5 .....total of (400 elements) 

F(t) 

.....(4 elements here)  

Figure 6: Simplified model of the Split Hopkinson Pressure Bar 

The structure model has 400 equal length elements, with the test specimen 
divided in four. The step load is applied on the left end and the resulting stress wave 
is obtained in an element in input bar at equal distance from the ends. Specifically the 
element number 100 is selected to model a strain gauge, where the transmitted and 
reflected stresses are recorded. The geometric data and mechanical properties of the 
set-up are as follows: Length of input and output bars 0,5 m; transverse sections 
4.9.×10-4 m2 and 1.225×10-4 m2, respectively (rod diameters of 25mm and 12.5mm for 
the test specimen). Material properties: Esteel = 210GPa and Ealum=70 GPa. The post 
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yield equivalent Young modulus is 1.4 GPa. Figure 7 presents the graphical output 
for the axial stress wave through element nº 100. 
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Figure 7: Example 2 - Stress wave at the element nº 100, a) in finite element 

analysis b) Experimental results with SHPB test,  

As can be seen from previous Figures, results are very similar despite a larger 
impact time in the experimental test. In the numerical analysis only the incident and 
reflected waves were presented wile this analysis is completed with the inclusion of 
the transmitted wave in the experimental procedure.  

Discussion and conclusions 

The performance of a developed finite element solution for the propagation of 
elastic-plastic waves along straight bars was analysed. The comparison between the 
finite element and the experimental procedure with SHPB has shown a good 
agreement in elasto-plastic wave propagation. The experimental results could open 
way to a better understanding of the behaviour of other kind of materials. 
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