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Summary 

 
A multiscale mathematical model is described for a nanostructure in a semi-infinite 
anisotropic solid containing one free surface. A modified form of molecular dynamics is 
used to calculate the equilibrium configuration of atoms in and close to the nanostructure, 
which are coupled to the host lattice through the lattice statics Green’s function. This 
gives a fully atomistic description of a nanostructure that includes the effect of nonlinear 
forces embedded in a large crystallite consisting of a million atoms or more. The lattice 
statics Green’s function is then related to the anisotropic continuum Green’s function that 
is used to model the free surface and also to relate the discrete lattice distortion to 
measurable continuum parameters such as the displacement and the strain fields at the 
free surface. The model is applied to a gold nanoisland embedded in fcc copper and a 
germanium quantum dot in silicon.  
 

Introduction 
 

A nanostructure is usually embedded in a lattice of a different material and can be 
treated as either a defect or an inclusion. A defect in a crystal lattice distorts the lattice. 
The lattice distortion is defined as the displacement of atoms from their equilibrium 
lattice sites and is a discrete variable. The corresponding quantity in the continuum model 
of a solid is the elastic strain. In order to interpret the measurement of strains, it is 
necessary to have a multiscale model that can relate parameters of the macroscopic 
continuum model to those of the discrete atomistic model of a solid.  
 

A mathematical model for a nanostructure should account for at least one free surface 
in the solid since the measurements are usually made at or near a free surface. The model 
should satisfy the following criteria: (i)  it must account for the discrete structure of the 
lattice in and around the nanostructure and, therefore, the crystallite must be sufficiently 
larger than the nanostructure, (ii) the crystallite must be large enough to include a free 
surface and for the lattice distortions to smear out into a continuum, so that the continuum 
parameters such as the strain and the displacement fields can be defined, (iii) the 
continuum parameters have to account for the elastic anisotropy since most materials of 
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practical interest are anisotropic, (iv) the model must include nonlinear interactions 
between atoms inside and close to the nanostructure even if the host lattice is harmonic, 
and, finally, (v) the model should be computationally efficient.  

 
The criteria (i), (ii), and (iii) require the model to be multiscale and bridge the length 

scales from the atomistic through to the macro continuum. The existing models (for an 
excellent review and other references, see, for example, [1,2]) do not meet all the above 
five criteria. The lattice statics Green’s function (LSGF) method [3] is computationally 
efficient and can model large crystallites but does not account for the nonlinear 
interactions. Molecular dynamics (MD) accounts for nonlinear forces but is usually 
limited to crystallites of only a few hundred atoms. Powerful techniques based upon MD 
have been developed by Vashishta et al. [4] to model large crystallites but these 
techniques are computationally intensive. MD calculations using flexible boundary 
conditions derived from the Green’s function [5] and purely numerical techniques [6] 
based upon finite element methods have been developed for some defect systems. No 
existing multiscale modeling technique has been applied to a nanostructure and a free 
surface in a large model crystallite consisting of a million or more atoms. 

 
In an earlier paper [7] we presented a multiscale Green’s function method that 

integrates the LSGF method for a million-atom crystallite with the continuum Green’s 
function (CGF) in the macroscopic limit and applied it to model point defects and 
extended defects in metals. We have now integrated [8] this method with MD in the core 
of a nanostructure at the subnanometer scale. By incorporating MD in our model, we 
include the nonlinear effects in the core of the nanostructure and obtain a fast algorithm 
for modeling a large crystallite.  

 
In our method the core of the defect or the nanostructure, where the nonlinear effects 

are significant, is modeled by using MD. This is the subnanometer scale region including 
a few hundred to a few thousand atoms, which can be easily handled by MD. The core is 
surrounded by a shell to which the core atoms are pegged in the MD calculations. The 
lattice beyond the core is modeled by using the LSGF method for a million-atom 
crystallite. This integrated method has the advantages of both techniques. It models a 
large crystallite and includes nonlinear effects in the core but without excessive 
computational requirements.  The LSGF reduces to the CGF at large distances from the 
core. The CGF is then used to model a free surface as in the Mindlin problem [9]. Thus 
our model integrates MD, LSGF, and CGF and meets all the five criteria given above. 
We will refer to our model as the GFMD model. 

 
This paper briefly reviews the GFMD model and the lattice distortion in and around a 

gold (Au) nanoisland in fcc copper. The details of the method will be published in [8]. 
Work on its application to a germanium quantum dot in silicon is in progress and will be 
reported at the conference.  
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Theory of the GFMD model 

 
We consider the Born-von Karman model for the host lattice assuming short-range 

interatomic interactions. We assume a Cartesian frame of reference with an atomic site as 
origin and the coordinate axes parallel to the crystallographic axes. We denote the lattice 
sites by vector indices l, l’ etc.  

 
The potential energy of the crystal can be written as 

 
W* =  ∑l Wl(xl),       (1) 

where  
 

xl = rl + ul        (2) 
 
denotes the instantaneous position of the atom l, rl its equilibrium lattice site, and Wl is 
its potential energy in the field of all other atoms. The sum over l in eq. (1) extends over 
all the atoms in the crystal. A perfect lattice with no defects has translation symmetry, so 
the form of the potential energy function Wl is independent of l for a perfect lattice. 
 

We assume that nA sites of the host lattice at the center of the supercell are occupied 
by foreign atoms. All the foreign atoms are assumed to fill all of the host lattice sites in a 
cube centered at the origin of the coordinates. We shall refer to this cube as the inner 
core. We further identify an outer cubic core that encloses the nA foreign atoms and nB 
host atoms. The size of the outer core is chosen such that it includes at least those atoms 
with which the atoms of the inner core interact directly. Obviously, in this model the 
atoms of the inner core will not directly interact with any atom of the host lattice outside 
the outer core. The core consisting of nA + nB atoms is treated as a defect in our model.  

 
We further identify a shell cube by drawing another cube containing nC atoms that 

encloses the defect cube and is also centered at the origin of the coordinates. The size of 
the shell cube is assumed to be much smaller than the size of the Born von Karman 
supercell. The region of the supercell outside the shell is referred to as the host region.  
 

Now we write the total potential energy of the crystal given by eq. (1) as 
 
W* =  ∑*l’ Wh(xl’) + ∑s 

l” Wh’(xl”) + ∑c 
L Wc(xL),    (3)  

 
where Wh is the potential function for a host atom, which is interacting only with other 
host atoms, Wh’ is the potential function for a host atom interacting with other host atoms 
as well as atoms in the defect cube, and Wc is the potential function of an atom in the 
defect cube interacting with other defect or host atoms. The superscripts *, s, and c over 
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the summation signs on the right hand side (RHS) of eq. (3) indicate that the summation 
is over a limited range of sites: the index l’ goes over all lattice sites outside the shell 
cube. The index l” goes over all lattice sites in the shell region (excludes the inner and 
outer core), and L goes over all the lattice sites of the defect cube. In case of a many-
body potential, which we assume in our calculations, each potential function depends 
upon the coordinates of many atoms.  
 

We rewrite eq. (3) as follows: 
 

W* =  W0 + ∆W,      (4) 
 where  

W0 =  ∑l Wh(xl),      (5) 
 

and ∆W contains the remaining terms in eq. (3). The sum in eq. (5) is over all the lattice 
sites of the perfect lattice. We define W0 as the energy of the reference state and ∆W as 
the change in the energy of the reference state caused by the defect. The interaction 
between each atom in the reference state is assumed to be harmonic. The defect space, as 
defined in [3], consists of the coordinates of all the atoms in the defect cube and those 
atoms in the shell with which the atoms in the defect cube directly interact.  
 

The atomic displacements at equilibrium are obtained by minimizing the total energy 
of the defect state given by eq. (4) which gives 
 

∂W0(xl)/ ∂ul =  Ft(l),        (6) 
 

where 
 

Ft(l) =  − ∂[∑s
 l” ∆Wh’(xl”) + ∑c

 L ∆Wc(xL)]/∂ul .   (7) 
 

The solution of eq. (6) in matrix notation is  
 

u = G Ft ,      (8) 
 
where G is the Green’s function matrix [3,7] for the reference state. The force Ft can be 
identified as the Kanzaki force defined in [3,7] and is nonvanishing only in the defect 
space. We calculate Ft by iteratively using MD and the Green’s function. In each MD 
iteration, we treat the displacements of the atoms in the shell as fixed and then calculate 
these displacements by using the LSGF in the next iteration.  
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Once we obtain Ft, we calculate the atomic displacements everywhere in the crystal 
by using the LSGF in eq. (8). The calculation and properties of the LSGF have been 
discussed in detail in [3]. Finally, to account for a free surface, we use the Mindlin CGF 
[9,10] for G in eq. (8), as has been done for a vacancy in copper [7]. By using the CGF, 
we can calculate the displacement and the strain fields at the free surface.  

 
We have applied the GFMD technique to model a 63-atom Au nanoisland embedded 

in fcc Cu containing a free (1,0,0) surface. We used the many-body potential derived by 
Cleri and Rosato [11] in these calculations. In our model, nA = 63, nB = 7750, and nC = 
10156. The number of atoms in the Born von Karman supercell for the calculation of the 
LSGF was 106.  Lattice distortion in the Au nanoisland is shown in Fig. 1. The filled 
circles denote the equilibrium positions of the atoms, whereas their original positions are 
denoted by empty circles. The diameter of the circles is chosen for visual convenience 
and has no physical significance. More numerical results on Au nanoisland in Cu and a 
Ge quantum dot in Si will be presented at the conference.  
 

Conclusions 
 

We have described the GFMD technique for modeling a nanostructure in a semi-
infinite solid containing a free surface. The technique combines MD, LSGF, and CGF 
and thus links the length scales from atomistic (subnanometers) to macroscale without 
excessive computational requirements. The model enables us to relate discrete atomic 
displacements with measurable macroscopic elastic parameters such as the strain and the 
displacement fields at the free surface without any need for an arbitrary averaging ansatz.  
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Fig. 1: Equilibrium position of the atoms in and around Au nanoisland in fcc Cu on the 
(0,0,1) plane. The empty circles denote the original lattice sites. Size of the circles is 
chosen arbitrarily for visualization. Au atoms as marked, Cu atoms unmarked. 
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