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Summary

Non-equilibrium fluid systems that are homogeneous in two spatial dimensions
and in time are considered. They offer a maximum of symmetries the breakings
of which are needed to identify bifurcations. The best known examples are the
Taylor-Couette system and Rayleigh-Bénard convection. While the first instability
generically occurs in the form of rolls or stripes, the physical properties of the system
are reflected by secondary bifurcations. The latter usually do not exhaust the
available symmetries and tertiary and quaternary bifurcations can be investigated
and compared with experimental observations as will be demonstrated in the case
of the Rayleigh-Bénard problem. The structures introduced by higher bifurcations
often persist as coherent structures in the turbulent state of the respective system.

Introduction

The most common approach towards understanding turbulent fluid flow is based
on statistical analysis. Since the details of the nearly random velocity fields observed
in laboratory experiments or in numerical simulations are of little interest, one
usually tries to characterize turbulent systems by their statistical properties and
by their time averaged properties in particular. Since it is generally accepted that
the basic Navier-Stokes equations (NSE) of motion provide the correct basis for
the description of turbulent fluid flow it is regrettable that rather little information
from the basic dynamical balances enters into the statistical analysis of turbulence.
The goal of this article is to demonstrate that relatively simple spatially periodic
solutions of the NSE can be quite useful for the understanding of typical dynamical
mechanisms operating in turbulent fluid systems. These “regular” solutions, - as we
shall call them in distinction to the turbulent solutions -, may well be unstable and
thus not observable in experiments. But there are many situations where regular
solutions are stable with respect to infinitesimal disturbances and where their basins
of attraction in the solution space are just too small to permit their realization in
an experiment.

In order to study the regular solutions it is convenient to restrict the attention
to systems that are homogeneous with respect two spatial dimensions. We shall
also use homogeneity in time by assuming constant external conditions. Since we
are considering non-equilibrium systems there must always be a dimension in which
an energy flux enters and exits the system. In figure 1 some typical systems are
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Figure 1: Examples for sequences of bifurcations in fluid dynamical systems.

displayed. While the basic state or primary solution reflects the homogeneity of
the configuration of the problem, spontaneous symmetry breakings characterize the
solutions bifurcating from the basic state as the control parameter increases. Unless
the bifurcation is subcritical these bifurcating solutions can usually be realized in
experiments when homogeneity is approached to a sufficient degree. The bifurcating
solution can be steady or oscillatory, but generically it is two-dimensional, i.e. it
assumes the form of rolls or stripes. With further increasing control parameter
secondary bifurcations are likely to occur which will break additional symmetries
by introducing, for instance, a second spontaneous wavenumber along the axis of
the rolls. While the secondary solution introduced by the first bifurcation is rather
similar in all cases owing to its two-dimensional nature, the tertiary, quaternary
and higher order states introduced by the second, third and higher bifurcations
are specific to the respective physical system and may also hange in dependence on
parameters of the system. For this reason different branches of bifurcation sequences
have been indicated in figure 1 in the cases of the Taylor-Couette-system and the
Rayleigh-Bénard layer. Further branches exist which have not been mentioned.
The approach to be described in the following has been developed to follow these
bifurcation branches and to identify the physical mechanisms that are the cause of
the bifurcations.
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Mathematical Description of Secondary Solutions and their Instabilities

In keeping with the general character of the sequence-of-bifurcations approach
we shall not consider specific equations here. Instead we consider the more abstract
mathematical problem of the form

LX + RKX − M
∂

∂t
X = N(X,X) (1)

where the vector valued variable X describes the deviation from the basic state
which exhibits the same degree of homogeneity as the external conditions of the
system. For this reason equation (1) is homogeneous and homogeneous boundary
conditions must be obeyed by X. L,K,M are linear operators involving partial
derivatives, while N(X,X) is the nonlinear part which typically is quadratic in
the variable X. R denotes a control parameter such as the Rayleigh or Reynolds
number. Although the surfaces of homogeneity could be spherical or cylindrical,
we shall restrict the attention for simplicity to planar surfaces. Accordingly we
introduce a Cartesian system of coordinates x, y, z with the z-coordinate in the
inhomogeneous dimension. The operators of equation (1) may thus depend on z,
but not on x, y or time t. In order to investigate the stability of the basic state with
respect to infinitesimal disturbances we neglect the right hand side of equation (1)
and look for solutions of the general form

X = exp{il · r + σt}G(l, z) (2)

where l is an arbitrary wavevector parallel to the surfaces of homogeneity and σ is
the growth rate which represents the complex eigenvalue of the linear homogeneous
equation (1) with vanishing right hand side. Of physical interest is the lowest value
of R for which an eigenvalue σ exists as a function of l with vanishing real part σr.
The corresponding values Rc of R and lc of l are called critical control parameter and
critical wave vector, respectively. For R exceeding Rc disturbances of the form (2)
will grow, but their amplitudes will saturate owing to the action of the nonlinearity
on the right hand side of equation (1). In the case of a supercritical bifurcation,
- which we shall assume -, the saturated amplitude varies smoothly with R − Rc.
For the description of this solution we orientate the coordinate system such that y
points in the direction of lc and assume σi = 0. The treatment of the case σi 6= 0
is analogous though slightly more complex. We thus arrive at the representation

Xi =
∑

m,n

a(i)
mn exp{imαy}G(i)

n (z) (3)

for the steady bifurcating solution in the form of rolls or stripes. The vector func-

tions G
(i)
n denote a complete system satisfying all boundary conditions and the

wavenumber α typically is set equal to | lc |. But when R exceeds Rc there usually
exists a neighborhood of wavevectors l around lc for which solutions of the form
(3) can be obtained. Although solutions of the form (3) are likely to exist for all
values R > Rc, they will in general become unstable as R increases much beyond
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Table 1: Symmetry properties of two-dimensional rolls (w refers to the ve-
locity component in the z-direction)

A translation in time: ∂w/∂t = 0
B translation along roll axis: ∂w/∂x = 0
C transverse periodicity: w(y + 2π/α1z) = w(y, z)
D transverse reflection: w(−y, z) = w(y, z) or a

−mn = amn

E inversion about roll axis: w(y + π

α
, z) = −w(y,−z) or amn = 0

for odd m + n

Rc. In order to investigate the stability with respect to infinitesimal disturbances
X̃ we must solve the linear homogeneous problem

LX̃ + RMX̃ + V
∂

∂t
X̃ = N(X̃,X) + N(X, X̃) (4)

Since X is steady and periodic in y a Floquet ansatz

X̃i = exp{ibx + idy + σt}
∑

m,n

ã(i)
nm exp{imαy}G(i)

n (z) (5)

can be assumed without loosing generality. For a given solution of the form (3)
the eigenvalues σ must be determined in dependence on the wavenumbers b and
d. Whenever there exists a σ with positive real part σr the steady roll solution
X is unstable. If all σr are negative or zero the solution X is regarded as stable.
There exist always the neutral disturbance X̃ = ∂X/∂y as solution of equation
(4) with σ = 0 which corresponds to an infinitesimal translation of the steady roll
solution perpendicular to its axis. In order to classify the growing disturbances of
the form (5) it is convenient to consider all symmetries of the solution (3) which
could possibly be broken by the instability. Among the symmetries of rolls listed in
table 1 the first three are common to all solutions of the form (3). The additional
symmetry D is found for convection rolls in a Rayleigh-Bénard layer or for Taylor
vortices between differentially rotating cylinders. In the case of symmetry with
respect to the midplane of the layer symmetry E holds as well. In table 2 typical
instabilities of rolls are listed that have been found in the Rayleigh-Bénard case
and in other systems. For details we refer to [1],[2],[3],[4]. Some of the instabilities
listed in table 2 do not lead to new states of convection, but generate convection
rolls with different wavelengths corresponding to values of α in the stable domain,
as, for example, in the case of the Eckhaus instability or in the case of the cross roll
instability at lower values of the Rayleigh number. Of special interest, however, are
instabilities evolving into three-dimensional structures which will be considered in
the next section.

1003

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

1003



Table 2: Symmetries Broken by Bifurcations from Rolls
Broken Symmetries A B C D E

Properties of σi 6= 0 b 6= 0 d 6= 0 ãmn 6= ãmn 6= 0 for

disturbances ã
−mn m + n = odd Remarks

Eckhaus Instab. X X

Crossroll Instab. CR X X

Knot-Instability KN X X
}differ by value of b

Even Blob-Instab. EB X X

Odd Blob-Instab. OB X X X

Oscillatory Instab. OS X X X

Zig-Zag-Instability ZZ X X
occurs also as wavy insta-

bility of Taylor vortices
Skewed Varic. Inst. SV X X X

{
occurs as Küppers-Lortz

instability in a rotating

convection layer
Osc. Skewed Var. Inst. X X X X

Three-Dimensional Solutions Emerging from Secondary and

Higher-Order Bifurcations

The mathematical analysis of tertiary solutions follows in close analogy to the
analysis of rolls. After the Galerkin representation

Xi =
∑

l,m,n

a
(i)
lmn exp{ilαxx + imαyy}G(i)

n (z) (6)

has been introduced where αx = b, αy = α have been used, nonlinear algebraic

equations for the coefficients a
(i)
lmn can be obtained by the projection of the basic

equations onto the space of the expansion functions used in the representation
(6). The algebraic equations can then be solved by a Newton-Raphson method
after a suitable truncation of the summations in expression (6) has been employed.
Representation (6) is applicable for solutions evolving from instabilities of rolls with
d = 0 and vanishing value σi. But for σi 6= 0 representation (6) can also be used
since oscillatory instabilities of rolls typically evolve into traveling waves. In that
case x must be replaced by x̂ = x − ct and the method of solution proceeds just as
in the case of steady tertiary solution. Even in the case of a finite values of d of the
strongest growing instability the representation (6) can still be used after α = αy

has been replaced by a fractional value, α̂y = α/p where the integers p and q is
chosen such that αq/p or α(1−q/p) approximates d. The evolution of subharmonic
instabilities with d = α/2 can most easily be analyzed in this way [5].

Tertiary solutions still exhibit a number of symmetries and their instabilities
can be investigated with a Floquet ansatz analogous to (5). The sequence-of bifur-
cations approach can be continued to quaternary and higher order solutions until all
available symmetries are exhausted. Theoretical solutions in the case of convection
[6] compare well with experimental observations.

Reference

1. Busse, F.H. (1967): “On the stability of two-dimensional convection in a layer
heated from below”, J. Math. Phys., Vol. 46, pp.140-150.

1004

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

1004



2. Clever, R.M., and Busse, F.H. (1974):“Transition to time-dependent convec-
tion”, J. Fluid Mech.Vol. 65, pp.625-645.

3. Busse, F.H., and Clever, R.M.(1979):“Instabilities of convection rolls in a
fluid of moderate Prandtl number”, J. Fluid Mech. Vol. 91, pp.319-335.

4. Bolton, E.W., Busse, F.H., and Clever, R.M. (1986):“Oscillatory instabilities
of convection rolls at intermediate Prandtl numbers”, J. Fluid Mech. Vol.
164, pp.469-485.

5. Nagata, M., and Busse, F.H. (1983): “Three-dimensional tertiary motions in
a plane shear layer”, J. Fluid Mech. Vol.135, pp.1-26.

6. Clever, R.M., and Busse, F.H. (1994): “Steady and oscillatory bimodal con-
vection”, J. Fluid Mech.Vol. 271, pp.103-118.

1005

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

1005




