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Summary 

In this paper, artificial neural networks (ANN) and the Box Jenkins approach [1] are used 
for modeling time series consisted of a sequence of water discharges, measured along 
several years of observation, through the foundation of a large Brazilian dam (Corumba-I 
dam).  Results indicated that the ANN technique could be a powerful tool for early 
detection of abnormal conditions during operation of dams. In particular, the application 
of neural networks yielded quite useful water discharge forecasts since conventional 
methods of analysis would require three-dimensional models and a detailed investigation 
of the difficult subsoil conditions at Corumba-I dam.  

Box Jenkins approach  

The field of statistics concerned with analysis of data possessing spatial and 
temporal dimensions is known as time series analysis. Forecast of future developments is 
the most widespread application of time series analysis. Quite often a classical statistical 
approach known as the AR[p] model is used, based on the linear autoregressive equations 
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where the prediction of variable Z at time t depends on a linear combination of p 
previous series observations, including the noise term ε . 

Finding an adequate AR[p] model means selecting the p appropriate terms and 
estimating the corresponding αi coefficients through a least-square optimization 
technique.  This method is rather limited, since it assumes a linear relationship among the 
sequence elements and it is based on the hypothesis that the times series is stationary, i.e. 
the mean and the standard deviation of the measured observations do not vary over time. 

Another approach for modeling time series is to assume the series being generated 
through a linear combination of q noise signals, referred in the literature as the moving 
average or the MA[q] model, or a combination of the AR[p] and MA[q] components 
giving rise to the so-called ARMA[p,q] models.  The aforementioned limitations of the 
autoregressive AR[p] model, concerning restrictions on linearity and stationarity of the 
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phenomenon being modeled, are also applicable to the MA[q] and ARMA[p,q] time 
series models. 

The time series for Corumbá-I dam consisted of 130 patterns, measured at time 
intervals of 15 days, beginning in March 1997 and extending to December 2002.  Two 
data sets were considered: the first one composed of 104 samples, used during the 
training phase, and the second data set (26 patterns) reserved for the validation process.  

The null of stationarity of the time series was determined with basis on the null of a 
unit root [2], while the sample autocorrelation function and the sample partial correlation 
function indicated that the sequence could be conveniently described by a linear 
autoregressive AR[1] model. Results for the univariate forecast performance are 
presented in table 1, while figures 1 and 2 compare the predicted and actual values for the 
training and validation phases.   

There are a number of error measurements that allow comparison between predicted 
and observed values.  The two most commonly used are the Root Mean-Square Error 
(RMSE) and the Mean Absolute Percentage Error (MAPE), considering fi the predicted 
result, ti the actual value and N the number of patterns.  
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The disadvantage of RMSE is that it is sensitive to outliers and the drawback of the 
MAPE is that it puts a heavier penalty on predictions that exceed the actual values than 
on those that fall behind. To help judgement about the performance of a regression 
model, Theil [3] proposed the following  index , 
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Values close to zero mean a good forecast accuracy while large values indicate a 
rather easy interpretation of the series behavior. The smaller the U-Theil index, the better 
the model performs compared to a naive prediction of no-change over the sample data. 

Table 1 – Forecast errors using AR[1] model.  

                 Training            Validation  

MAPE (%) RMSE U-THEIL MAPE (%) RMSE U-THEIL 

35.440 40.863 0.950 10.867 34.210 1.022 
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Figure 1: Comparison between real and predicted values during the training phase of 

the AR[1] model for Corumbá-I dam. 
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Figure 2: Comparison between real and predicted values during the validation phase 

of the AR[1] model for Corumbá-I dam. 

Artificial neural networks - ANN   

A multilayer feedforward neural network could be used to replace the linear function 
φL in equation (1) by a non-linear function φNL estimated from a learning technique such 
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as the backpropagation or the conjugent gradient methods. Making φNL dependent on the 
p previous sequence elements is equivalent to use p input units being fed with p adjacent 
sequence elements [4].  

The sequence of water discharges through the foundation of Corumba-I dam was 
also modelled using a multilayer feedforward network, a very common network 
architecture composed by an input layer of several source nodes, a hidden layer 
containing 1 to 10 neurons and an output layer with 1 neuron (the water discharge 
forecast). The algorithm for training the neural networks was the backpropagation 
algorithm, with the descendent gradient method. Several ANN were trained and tested in 
order to assess their influence on the network model and, in this way, to find out the most 
adequate neural netwok for the flow conditions observed in field. Each neural network 
was initialized 5 times, aiming to reduce the effects of non-optimum local minimum. The 
stop criterion for the training algorithm was the early stop criterion [5]. 

Eight ANN were organized according to the number and type of input parameters, as 
shown in table 2, where the symbol Q represents the measured water discharge, L the 
reservoir water level and P the piezometer readings. The output value refers to water 
discharge at time t, being ∆t equal to 15 days, i.e. the time interval between consecutive 
measurements.  Each configuration was trained and tested several times, admitting 2, 3, 
5, 8 and 10 neurons in the hidden layer. All networks have the discharge value Qt-∆t as an 
input parameter, given the previous (and good) results obtained with the AR[1] model.  

Table 3 presents a summary of the computed ANN errors, where the values a/b/c in 
the topology column mean the number of input parameters, the number of hidden neurons 
and the number of output neurons, respectively. ANN1 with topology 1/3/1 was chosen 
as the “best” ANN for water discharge forecasts. This choice was made based on the 
magnitude of the computed validation errors as well as on the concept of parsimony, 
since ANN1 is a model that yields good predictions with a small number of neurons.  

Figures 3 and 4 compare the actual measured values with respective forecasts using 
ANN1 1/3/1.  

Conclusion 

ANN were used to control performance monitoring of the Corumba -I dam. Results 
indicate that this model can be successfully extended to other dams where the early 
detection of abnormal conditions of water flow is of fundamental importance.  

The Box-Jenkins approach is a helpful tool for preliminary analyses, permitting a 
priori estimates on the required number of sequence elements for the ANN models. 
When ANNs involve several variables as input parameters, such as temperature, reservoir 
water levels, piezometric readings, etc., it is clear that the choice of the number and type 
of parameters must be made based on a good understanding of the physical phenomena 
being modeled.  
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Table 2 - Eight ANNs with different number and type of input parameters. 
Neural Network Input Parameters 

ANN1 Qt-∆t 

ANN2 Qt-∆t, Qt-24∆t, Qt-25∆t, Qt-26∆t 
ANN3 Qt-∆t, Qt-23∆t, Qt-24∆t, Qt-25∆t 
ANN4 Qt-∆t, Lt-∆t 
ANN5 Qt-∆t, Qt-24∆t, Lt-∆t, Lt-24∆t 
ANN6 Qt-∆t, Qt-24∆t, Qt-25∆t, Qt-26∆t, Lt-∆t, Lt-24∆t, Lt-25∆t, Lt-26∆t 
ANN7 Qt-∆t  , Pt-∆t 
ANN8 Qt-∆t  , Qt-16∆t, Qt-17∆t, Qt-18∆t, Qt-19∆t, Pt-∆t, Pt-16∆t,  Pt-17∆t, Pt-18∆t, Pt-19∆t 

 
Table 3- Summary of the neural networks performance. 

ANN Topology Training error  Validation error  

  
MAPE 

(%) RMSE U-THEIL 
MAPE 

(%) RMSE U-THEIL 

1 1/3/1 33.559 41.452 0.962 8.165 27.921 0.852 
2 4/3/1 55.490 44.774 1.041 7.098 29.039 0.839 
3 4/3/1 44.590 38.672 0.904 7.277 30.114 0.871 
4 2/8/1 25.721 34.313 0.800 9.731 30.638 0.915 
5 8/3/1 41.462 40.481 0.938 10.190 30.897 0.893 
6 4/10/1 33.537 35.453 0.833 10.302 30.377 0.855 
7 2/5/1 31.304 36.558 0.851 9.041 32.405 0.966 
8 10/10/1 33.990 33.846 0.810 8.854 34.773 0.991 
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Figure 3: Comparison between real and predicted values during the training phase. 
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Figure 4: Comparison between real and predicted values during the validation phase. 
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