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Monitoring dam performance through neural networks and the Box
Jenkins approach
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SUmmary

In this paper, artificid neura networks (ANN) and the Box Jenkins gpproach [1] are used
for moddling time series consisted of a sequence of water discharges, measured aong
severd years of observation, through the foundation of a large Brazilian dam (Corumba:-|
dam). Results indicated that the ANN technique could be a powerful tool for early
detection of abnorma conditions during operation of dams. In particular, the gpplication
of neura networks yielded quite useful water discharge forecasts since conventiona
methods of andysis would require three-dimensonad modes and a detailed investigation
of the difficult subsoil conditions a Corumba:l dam.

Box Jenkins approach

The fidd of datistics concerned with andysis of data possessng spatid and
temporal dimensions is known as time series andysis. Forecast of future developments is
the most widespread application of time series analyss. Quite often a classical datistical
gpproach known as the AR[p] modd is used, based on the linear autoregressive equations

Z(0= Sa,Z(t- ) +e) =1 (Z(t- D,..2(t- p)+e() ®

where the prediction of varigble Z a time t depends on a linear combingtion of p
previous series obsarvations, including the noiseterm e.

Finding an adequate AR[p] modd means selecting the p appropriate terms and
edimating the corresponding a; coefficients through a least-square optimization
technique. This method is rather limited, since it assumes a linear relationship among the

sequence dements and it is based on the hypothesis that the times series is dationary, i.e.
the mean and the standard deviation of the measured observations do not vary over time.

Another approach for modeling time series is to assume the series being generaed
through a linear combination of q noise sgnds, referred in the literature as the moving
average or the MA[g] mode, or a combination of the AR[p] and MA[g] components
giving rise to the so-caled ARMA[p,g modds. The aforementioned limitations of the
autoregressve AR[p] model, concerning redtrictions on linearity and Stationarity of the
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phenomenon being modeled, are dso goplicable to the MA[g] and ARMA[p,q] time
series models.

The time series for Corumb&| dam consisted of 130 patterns, measured & time
intervals of 15 days, beginning in March 1997 and extending to December 2002. Two
data sets were consdered: the first one composed of 104 samples, used during the
training phase, and the second data set (26 patterns) reserved for the validation process.

The null of Sationarity of the time series was determined with basis on the null of a
unit root [2], while the sample autocorreation function and the sample partia correlation
function indicated that the sequence could be conveniently described by a linear
autoregressve AR[1] model. Results for the univariate forecast performance are
presented in table 1, while figures 1 and 2 compare the predicted and actua values for the
training and validation phases.

There are a number of error measurements that alow comparison between predicted
and observed vaues. The two most commonly used are the Root Mean-Square Error
(RMSE) and the Mean Absolute Percentage Error (MAPE), considering f; the predicted
result, t; the actud value and N the number of patterns.

N 2
a(fi-t) 1N]f. -t
RMSE=1/iZ " MAPE=— & |-—i|" 100% (29)
N N i=1 i

The disadvantage of RMSE is that it is sengtive to outliers and the drawback of the
MAPE is that it puts a heavier pendty on predictions that exceed the actud vaues than
on those that fal behind. To help judgement about the performance of a regresson
modd, Thelil [3] proposed the following index ,

1/—a(f - t)?
U- Thell = (2b)

—af +\/—at
Ni=1
Vdues close to zero mean a good forecast accuracy while large values indicate a

rather easy interpretation of the series behavior. The smaler the U-Thell index, the better
the modd performs compared to a naive prediction of no-change over the sample data.

Table 1 — Forecast errors using AR[1] moddl.

Traning Vdidation
MAPE (%) RMSE U-THEIL| MAPE (%)| RMSE| U-THEIL
35.440 40.863 0.950 10.867 34.210 1.022
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Figure 1. Comparison between redl and predicted values during the training phase of
the AR[1] modd for Corumba-| dam.
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Figure 2: Comparison between redl and predicted vaues during the validation phase
of the AR[1] modd for Corumba-| dam.

Artificial neural networks- ANN

A multilayer feedforward neural network could be used to replace the linear function
f L in equation (1) by a non-linear function f . estimated from a learning technique such
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as the backpropagation or the conjugent gradient methods. Making f n. dependent on the
p previous sequence dements is equivalent to use p input units being fed with p adjacent
sequence elements [4].

The sequence of water discharges through the foundation of Corumba-1 dam was
dso moddled usng a multilayer feedforward network, a very common network
architecture composed by an input layer of severd source nodes, a hidden layer
containing 1 to 10 neurons and an output layer with 1 neuron (the water discharge
forecast). The agorithm for training the neural networks was the backpropagation
agorithm, with the descendent gradient method. Saveral ANN were trained and tested in
order to assess their influence on the network modedl and, in this way, to find out the most
adequate neura netwok for the flow conditions observed in field. Each neura network
was initidized 5 times, aming to reduce the effects of non-optimum loca minimum. The
stop criterion for the training agorithm was the early stop criterion [5].

Eight ANN were organized according to the number and type of input parameters, as
shown in table 2, where the symbol Q represents the measured water discharge, L the
reservoir water level and P the piezometer readings. The output value refers to water
discharge a timet, being Dt equd to 15 days, i.e. the time interva between consecutive
measurements.  Each configuration was trained and tested severd times, admitting 2, 3,
5, 8 and 10 neurons in the hidden layer. All networks have the discharge vaue Q..o asan
input parameter, given the previous (and good) results obtained with the AR[1] modd.

Table 3 presents a summary of the computed ANN errors, where the values ab/c in
the topology column mean the number of input parameters, the number of hidden neurons
and the number of output neurons, respectively. ANNL1 with topology 1/3/1 was chosen
as the “best” ANN for water discharge forecasts. This choice was made based on the
magnitude of the computed vaidation errors as well as on the concept of parsmony,
since ANN1 isamodd that yields good predictions with a smal number of neurons.

Figures 3 and 4 compare the actua measured values with respective forecasts using
ANN1 1/3/1.

Conclusion

ANN were used to control performance monitoring of the Corumba-l dam. Results
indicate that this model can be successfully extended to other dams where the early
detection of abnorma conditions of water flow is of fundamental importance.

The Box-Jenkins gpproach is a helpful tool for preiminary andyses, permitting a
priori estimates on the required number of sequence eements for the ANN models.
When ANNs involve severd varigbles asinput parameters, such as temperature, reservoir
water levels, piezometric readings, €tc., it is clear that the choice of the number and type
of parameters must be made based on a good understanding of the physica phenomena
being modded.
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Table 2 - Eight ANNswith different number and type of input parameters.

Neural Network | Input Parameters
ANNI Oioe
ANNZ Qt-ot, Qt-24pt, Qt-250t, Qt-26Dt
ANNS Qt-pt, Qt-230t, Qt-240t, Qt-250t
ANN4 Qt-ot, Lt-ox
ANNS Qt-pt, Qt-24pt, Li-oty Li-2ax
ANNG Qt-ot, Qt-24pt, Qt-250t, Qt-26Dt, Lt-nt, Le-24pt, Lt-250t, Lt-260t
ANNY Qt-ot, Piox
ANNG Qt-ot, Qt-160t, Qt-170, Qt-180t, Qt-100t, Peopt, Peasoy, Rz, Prasn, P

Table 3 Summary of the neura networks performance.
ANN Topology Training error Vdidetion error

MAPE MAPE
(%) RMSE |U-THEIL| (%) RMSE |U-THEIL

13/1 | 33.559 | 41.452 | 0.962 | 8.165 | 27.921 | 0.852
4/3/1 | 55490 | 44774 | 1041 7.098 | 29.039 0.839

4/3/1 | 44590 | 38672 | 0.904 7277 | 30114 0871
2/8/1 | 25721 | 34313 | 0.800 9.731 | 30.638 0.915
8/3/1 | 41462 | 40481 | 0938 | 10190 | 30.897 0.893
4/10/1 | 33537 | 35453 | 0.833 | 10302 | 30.377 0.855
2/5/1 | 31304 | 36558 | 0.851 9041 | 32405 0.966
10/10/1| 33990 | 33846 | 0810 8854 | 34.773 0.991
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Figure 3: Comparison between real and predicted vaues during the training phase.
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Figure 4: Comparison between red and predicted values during the validation phase.
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