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Summary

In this paper, we study the two-dimensional volume fraction optimization
of heat resisting metal/ceramic functionally graded materials (FGMs). The
plane stress static thermoelastic behavior of a FGM is analyzed using the
element-free Galerkin method. The effective material properties of the two-
phase FGM is estimated using the Mori-Tanaka and self consistent schemes.
A genetic algorithm optimization procedure is used to determine the ceramic
volume fraction distribution that would minimize the peak effective stress.

Introduction

Advanced composite materials offer numerous superior properties to metallic
materials, like high speciÞc strength and high speciÞc stiffness. For exam-
ple, a layer of a ceramic material can be bonded to the surface of a metallic
structure to form a thermal barrier coating in high-temperature applications.
However, the abrupt transition in material properties across the interface be-
tween discrete materials can result in large interlaminar stresses, and even-
tually delamination failure. One way to overcome these adverse effects is
to use functionally graded materials. FGMs are inhomogeneous materials,
consisting of two (or more) different materials, engineered to have a contin-
uously varying spatial composition proÞle. The choice of material phases is
motivated by functional performance requirements. The determination of
the optimal volume fraction distributions of the constituents is critical in
the design of FGMs. Here we analyze the thermal stress in FGMs using the
element-free Galerkin method [1] and optimize the volume fraction distribu-
tion using genetic algorithms [2]. The volume fraction at a point is obtained
from nodal volume fraction parameters using piecewise bicubic interpolation.
Numerical results are presented for a Ni-Al2O3 FGM that is subjected to a
uniform temperature change. It shows that the proposed approach can lead
to better designs for FGMs than conventional gradient based optimization
methods.
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Thermoelasticity Equations

We consider the inÞnitesimal static thermoelastic deformations of an isotropic
body which occupies a domain Ω. The rectangular Cartesian coordinates xi
are used to describe its deformation in the unstressed reference state. The
mechanical equilibrium and constitutive equations for an isotropic material
are

divσ + ρb = 0, σ = λ(tr ε)1+ 2µε−βθ1, (1)

where σ is the Cauchy stress tensor, b is the body force per unit mass, ρ is
the mass density, ε is the inÞnitesimal strain tensor, 1 the identity tensor,
λ and µ are the Lamé constants, θ is the change in temperature from the
reference state and β the stress-temperature modulus. The inÞnitesimal
strain tensor is related to the displacement vector u by ε =(∇u+∇Tu)/2.
At every point x on the boundary Γ, either the displacement component
ui = �ui or the mechanical traction σijnj = �σi is prescribed in each coordinate
direction xi, which can be stated as

Su+(1− S)σ n = S�u+(1− S)�σ on Γ, (2)

where S is a diagonal matrix with either 0 or 1 on the diagonals.

Element-free Galerkin Method

Let ξ be a smooth vector test function such that Sξ = 0 on Γ. Taking the
dot product of (1)1 with ξ and integrating over the domain, and utilizing the
Duhamel-Nuemann thermoelastic-elastic correspondence principle results in
the weak formulationZ

Ω

σ : ε(ξ) dΩ+ δ

Z
Γ

Su · ξ dΓ =
Z
Ω

ρb · ξ dΩ+
Z
Γ

(1− S)�σ · ξ dΓ

−
Z
Γ

βθSn · ξ dΓ+
Z
Ω

βθdivξ dΩ+ δ
Z
Γ

S�u · ξ dΓ, (3)

where δ is the mechanical penalty parameter, which is chosen to be in the
range 103 to 107 times the Young�s modulus. We select the following dis-
cretization of the scalar temperature Þeld at a position x in the domain:

ui = φk(x)ūki, k = 1, 2, ..., N ; i = 1, 2, (4)
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where N is the number of nodes in the domain, φk(x) are the MLS approx-
imation functions [1] and ūki are the nodal displacement parameters which
are to be solved for. In the Galerkin formulation, the test functions are also
discretized as

ξi = φk(x)ξ̄ki. (5)

Substitution of (4) and (5) into the weak formulation (3) yields the following
system of algebraic equations for the nodal displacement parameters,

Ljk ūk = fj , k, j = 1, 2, ..., N, (6)

where the matrices in (6) are deÞned as

Ljk =
R
Ω

DT
j CDk dΩ+ δ

R
Γ

ΦjSΦk dΓ,

fj =
R
Ω

ρΦjb dΩ+
R
Γ

Φj(I− S)�σ dΓ+
R
Ω

βθΨj dΩ

− R
Γ

βθΦjSn dΓ+ δ
R
Γ

ΦjS�u dΓ,

Φj =

·
φj 0
0 φj

¸
, Dj =

 φj,1 0
0 φj,2
φj,2 φj,1

 , ūk = ½ ūk1
ūk2

¾
,

Ψj =

½
φj,1
φj,2

¾
,C =

E

1− ν2

 1 ν 0
ν 1 0
0 0 (1− ν)/2

 , β = αE

1− ν .

Volume Fraction Interpolation Scheme

The volume fractions are chosen over a regularly spaced rectangular grid.
Between the grid points, the volume fraction is obtained using piecewise
bicubic interpolation. The restriction of the volume fraction to remain be-
tween the physically valid bounds of 0 and 1 is achieved by setting allowable
limits on the partial derivatives used in the bicubic interpolation [3]. The
volume fraction V (x, y) over a rectangular grid element of the domain is
interpolated from the nodal volume fractions V (xi, yj) and the partial deriv-
atives Vx(xi, yj), Vy(xi, yj) and Vxy(xi, yj) at the grid nodes using Hermite
basis functions. The partial derivatives of the volume fraction distribution
proÞle at a node (xi, yj) are estimated using three point difference estimates,
which are then projected onto the valid range.
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Genetic Algorithm Optimization

An important limitation of traditional classical optimization methods, such
as the gradient-based methods, is that they tend to get stuck at a suboptimal
solution. Genetic algorithms (GA) are better at Þnding global solutions and
they are easy to parallelize. A GA is a search and optimization method that
mimics the evolutionary principles and chromosomal processing in natural
genetics [2]. A GA begins its search with a random population of design pa-
rameters (genes), usually coded in binary string structures (chromosome).
In the present case, each volume fraction parameter at the grid points cor-
responds to a gene that describes the design. The population of solutions
is modiÞed to a new population by applying three operators similar to nat-
ural genetic operators - reproduction, crossover, and mutation. The algo-
rithm systematically analyzes each individual of the population of designs
according to set speciÞcations (geometry, boundary conditions and thermo-
mechanical loads) and assigns it a Þtness rating which reßects the designer�s
goals. This Þtness rating is then used to determine which designs perform
better than others, thereby enabling the genetic algorithm to determine the
designs that are weak and must be eliminated (survival of the Þttest), thus
producing the next generation of designs. The process is iterated over many
generations until the optimal design is identiÞed. Since the optimization
parameters, namely the volume fraction parameters, are real valued and
continuous, we have implemented a real-coded GA. Unlike a binary-coded
GA, the crossover and mutation operators act directly upon the real chro-
mosome parameters, not on a binary coded version of the parameters, which
allows the GA to operate in a continuous search space. Several different
real-coded GA recombination operators have been developed, including the
unimodal normal distribution crossover (UNDX) operator and simulated bi-
nary crossover (SBX) operator [4]. We have utilized the simulated binary
operator and a tournament selection process in the reproduction phase of
the GA.

Results and Discussion

Consider the model problem depicted in Fig. 1 which consists of a half
of a simply supported three-layered Ni-Al2O3 heat-resisting FGM that is
uniformly cooled down to 300 K from uniform initial temperature of 1000
K [5]. The goal is to optimally tailor the volume fraction distribution in
the design region to minimize the effective stress. Cho and Ha [5] used
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Þnite element simulations, piecewise bilinear approximations for the volume
fractions and a gradient based optimization algorithm to decrease the peak
effective stress to 268 MPa for this conÞguration.

Figure 1: Simply supported FGM subjected to uniform temperature change

We have analyzed the same problem using the element-free Galerkin method
and optimized the volume fraction distribution using a real-coded GA. The
EFG analysis is performed with 144 regularly spaced nodes and the mechani-
cal penalty parameter δ = 7×1015. A total of 28 volume fraction parameters
at regularly spaced nodes is used to optimize the volume fraction distribu-
tion in the design region. The effective material properties at a point are
estimated using either the Mori-Tanaka scheme or the self-consistent scheme,
depending on the local ceramic volume fraction as described by Vel and Batra
[6]. The population size of the GA is 280 and the optimization is terminated
at 152 generations after the effective stress converged to its minimum value.
Figure 2(b) shows the effective stress distribution corresponding to a linear
grading of the volume fraction depicted in Fig. 2(a). The peak effective
stress of 254 MPa occurs at the top surface of the plate. The optimized
volume fraction distribution is depicted in Fig. 2(c). The peak effective
stress corresponding to the optimized material distribution is 135 MPa (Fig.
2d), which represents a signiÞcant reduction. The results show that the
proposed approach using the element-free Galerkin method and genetic al-
gorithms can lead to better designs for FGMs than conventional gradient
based optimization methods.
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Figure 2: a) initial ceramic volume fraction, b) initial effective stress,
c) optimized ceramic volume fraction and d) optimized effective stress.
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