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Summary

In this work we show the application of the Method of Fundamental Solutions (MFS)
in the determination of eigenfrequencies and eigenmodes associated to wave scattering
problems. This meshless method has already been applied to simple geometry domains
with Dirichlet boundary conditions (e.g. [8]). Here we show that a particular choice of
point-sources can lead to very good results for a fairly general type of domains. Simulations
with other types of boundary conditions are also considered.

Introduction

The determination of the eigenvalues and eigenfunctions associated to the Laplace op-
erator in a bounded domainΩ is a well known problem with applications in acoustics (e.g.
[5], [6]). For simple shapes, such as rectangles or circles in 2D, this leads to straightforward
computations, without the need of a numerical algorithm. However, when the shape is non
trivial, that computation requires the use of a numerical method for PDEs. A standard finite
differences method can produce good results when dealing with a particular type of shapes
defined on rectangular grids, while for other type of shapes the finite element method or
the boundary element method are more appropriated (e.g. [10]). These classical methods
require extra computational effort; in one case, the construction of the mesh and the asso-
ciated rigid matrix, and in the other, the integration of weakly singular kernels. Here we
propose a meshless method for solving the eigenvalue problem using the method of funda-
mental solutions (MFS). The MFS has been mainly applied to boundary problems in PDEs,
starting in the 1960s (e.g. [9] or [2]). An account of the development can be found in [7].
The application of the MFS to the calculation of the eigenvalues has been introduced by
Karageorghis in [8], and applied for simple shapes. In [8] it is presented a comparison with
the boundary element method used by De Mey in [10], and the results obtained for simple
shapes (circles, squares), show a better performance for the MFS. The application of other
meshless methods to the determination of eigenfunctions and eigenmodes has also been
subject to recent research, mainly using radial basis functions (e.g. [4]).
In this work we consider the application of the MFS to general shapes. In that case the
choice of the source points in the MFS becames more important to retrieve higher eigen-
frequencies. We are able to obtain good results with a particular algorithm associating the
source points to the shape. Having determined an approximation of the eigenvalue, we
apply an algorithm based on the MFS to obtain the associated eigenmodes.

Helmholtz equation

Let Ω⊂R2 be a bounded connected domain with regular boundary∂Ω. For simplicity
we will consider the 2D - Dirichlet eigenvalue problem for the Laplace operator. This is
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equivalent to obtain the resonance frequenciesκ that verify the Helmholtz equation
{

∆u+κ2u = 0 in Ω,
u = 0 on ∂Ω,

(1)

for a non null functionu. As an application, this corresponds to recover the resonance
frequenciesκ > 0 associated with a particular shape of a drumΩ.
A fundamental solutionΦκ of the Helmholtz equation verifies(∆+κ2)Φ =−δ, whereδ is
the Dirac delta distribution. In the 2D case, we take

Φκ(x) =
i
4

H(1)
0 (κ |x|) (2)

whereH(1)
0 is the first Ḧankel function.

A density result in [1] states that ifκ is not an eigenfrequency then

L2(∂Ω) = span
{

Φκ(x−y)|x∈∂Ω : y∈ Γ̂
}
, (3)

where Γ̂ is an admissible source set, for instance, the boundary of a bounded open set
Ω̂ ⊃ Ω̄, consideringΓ̂ surrounding∂Ω. This allows to justify the approximation of aL2

function, with complex values, defined on∂Ω, using a sequence of functions

um(x) =
m

∑
j=1

αm, jΦκ(x−ym, j) (4)

that converges tou|Γ in L2(∂Ω). This is a partial justification to the convergence of the
Method of Fundamental Solution (MFS) based on density results. It is similar to Bogo-
molny’s approach in [3], but it avoids the use of boundary layer potentials. As pointed out
in [1] or [3], the convergence of the MFS, in a general case, is not completely related to
the discretization of a single layer potential, although there is a straightforward relation.
A single layer potential defined on̂Γ is an analytic function inΩ, and therefore such an
approach would only be appropriate for analytic functions.

Sinceu|Γ ≡ 0 is an analytic function, it makes sense to consider the approach of the
MFS as being related to the discretization of the single layer potential, forx /∈ Γ̂,

Sκϕ(x) =
Z

Γ̂
Φκ(x−y)ϕ(y)dsy ≈ um(x) =

m

∑
j=1

αm, jΦκ(x−ym, j). (5)

Theorem:
If κ is not an eigenfrequency of the interior Dirichlet problem then dim(Ker(Sκ)) = 0.
Proof. If κ is not an eigenfrequency thenSκϕ = 0 on ∂Ω implies Sκϕ = 0 in Ω, by the
well posedness of the interior Dirichlet problem. Using the analyticity ofSκϕ, this implies
Sκϕ = 0 in Ω̂ and the continuity of the traces implies(Sκϕ)+ = (Sκϕ)− = 0 onΓ̂. Therefore,
by the well posedness of the exterior Dirichlet problem, with the Sommerfeld radiation
condition (verified bySκϕ), this impliesSκϕ = 0 in R2. In conclusion,Sκϕ = 0 on ∂Ω
impliesϕ = 0, and therefore dim(Ker(Sκ)) = 0. ¤

Thus, using this result, we search forκ such that dim(Ker(Sκ)) 6= 0.
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Numerical Algorithm

From the previous considerations we may sketch a procedure of finding the eigenvalues
by checking the frequenciesκ for which dim(Ker(Sκ)) 6= 0. Defininingmcollocation points
xi ∈ ∂Ω andmsource pointsym, j ∈ Γ̂,we obtain the system

m

∑
j=1

αm, jΦκ(xi −ym, j) = 0, (xi ∈ ∂Ω). (6)

Therefore a straighforward procedure is to find the valuesκ for which them×mmatrix

A(κ) = [Φκ(xi −y j)] [α j ]m×m (7)

has a null determinant. However, an arbitrary choice of source points may lead to worst
results than the expected with the MFS applied to simple shapes. We will choose the points
x1, ....,xm∈ ∂Ω andy1, ....,ym∈ Γ̂ in a particular way. Given thempointsxi on∂Ω, we take
mpoint sources

yi = xi + ñi

whereñi is approximately normal to the boundary∂Ω on xi . To obtain the vector̃ni we
just considerτ− = xi − xi−1, τ+ = xi − xi+1 and calculaten−, n+ which are normal toτ−
andτ+ (respectively) and pointing outwardsΩ. Then we takẽni = 1

2(n−+n+). By some
experimental criteria, we will usually take|ñi |= β(≈ 1/3). Source points taken too far from
the boundary only presented better results in some particular cases, using simple shapes.

The components of the matrixA(κ) are complex numbers, so the determinant is also
a complex number. We consider the real functiong(κ) = |Det[A(κ)]| . It is clear that the
functiong will be very small in any case, since the MFS is highly ill conditioned and the
determinant is quite small. To avoid machine precision problems the code was built in
Mathematica.
If κ is an eigenfrequency,κ is a point of minimum whereg(κ) = 0 and therefore the deriva-

tive changes sign. We will make use of the rough approximationg′(w)≈ g(w+ε)−g(w−ε)
2ε for

a smallε > 0. To approximate the eigenfrequencies, where a clear change on the sign of
the derivativeg′ is attained, we used the simple bissection method, which revealed to be
quite accurate in the search of high eigenfrequencies, which are closer to each other.

Once we have an eigenfrequency determined, we may get the eigenfunctions just by con-
sidering extra collocation points inside the domain. Depending on the multiplicity of the
eigenvalue, we will add one or more collocation points to make the linear system well
determined.

Determination of an Eigenmode

To obtain an eigenfunction associated with a certain resonance frequencyω we use a
collocation method onn+1 points, withx1, · · · ,xn on ∂Ω and a pointxn+1 ∈Ω. Then, the
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approximation of the eigenfunction is given by

ũ(x) =
n+1

∑
k=1

αkΦω(x−yk). (8)

To exclude the solutioñu(x)≡ 0, the coefficientsαk are determinated by the resolution of
the system

{
ũ(xi) = 0 i = 1, . . . ,n

ũ(xn+1) = 1 ,
(9)

When we taken = m this resumes to add one line and one column to the matrixA(κ)
defined in (7).

Simulation 1: Dirichlet boundary condition.

We consider a domainΩ1 with a non trivial boundary given by the parametrization

t 7→
(

cos(t)− cos(t)sin(2t)
2

,sin(t)+
cos(4t)

6

)
.
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Figure 1:Plots of the 21th· · ·24th eigenmodes associated toΩ1

In Fig. 1 we present 4 plots with the eigenfunctions associated to the 21th· · ·24th
eigenvalues. In top of each picture it is written the associated eigenfrequency.

In Fig. 2 we show the nodal domains, i.e. the components where the eigenmode keeps
the same sign.
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Figure 2:Plots of the 21th· · ·24th nodal domains associated toΩ1

Simulation 2: Dirichlet/Neumann boundary conditions

To show the versatility of the MFS applied to the identification of eigenfrequencies
and eigenmodes we will also present an example with a non simply connect domainΩE =
ΩC\B̄(0,1), whereΩC is the domain with boundary parameterized by

t 7→ (3cos(t),2(sin(t)+cos(2t))+2) .

In ∂ΩC we impose a null Dirichlet boundary condition and in∂B(0,1) we impose a null
Neumann boundary condition.

In this example we used 120 collocation and source points for the exterior boundary,
and 60 for interior boundary. Note that in the case of a non simply connected domain, we
must consider source points in all connected components ofΩC.
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Figure 3:Eigenmode for the 4th eigenfrequency: plot and nodal domains.

Conclusions: In this brief account we presented the MFS method with an algorithm
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for the choice of source points that has already been applied to the determination of eigen-
frequencies and eigenmodes for hundreds of non trivial domains. The single example for
a particular situation of mixed Dirichlet/Neumann illustrates the good results already ob-
tained for other type of boundary conditions and non simply connected domains.
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