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Summary
A new Spectral Element Method to solve earthquake rupture dynamics along non pla-

nar faults has been derived. The method takes implicitely into account non regular contact
and frictional conditions on the fault. The method is shown to be quite flexible and accu-
rate. For slip weakening friction law, the method allows to resolve the nucleation phase as
well as the dynamic rupture front propagation. Several examples will be presented both for
planar and non planar fault geometries.

Introduction
The development of dense digital seismic networks in several seismogenic areas (Cal-

ifornia, Japan), has bring new constrains of the spectral content of seismic sources, of the
slip and slip velocity spatio-temporal distributions during the earthquake rupturing process,
and of the nucleation phase of some large earthquakes. Numerical simulation of dynamic
earthquake rupturing require todays the resolution of different time and space scales in or-
der to capture the rupture front propagation and the short wave radiation associated with
heterogeneous faults of complex geometries.

Two classes of methods are usually adopted to solve faulting problems in seismology:
finite differences and boundary integrals. Finite differences, which makke use of a mixed
formulation and staggered grids, suffer from grid dispersion errors and spurious diffractions
due to the discretization, when modeling curved faults [1]. On the other hand, boundary
integrals are able to model 3D non coplanar fault segments but are limited to homogeneous
elastic media [2].

The spectral element method (SEM) combines the geometrical flexibility of the finite
elements with the exponential convergence rate of the spectral methods [3]. This method
has been recognized to be a powerful tool for the simulation of wave propagation at local
and global scales [4]. Since SEM is based on a variational approximation of the elasto-
dynamics equation and a piecewise polynomial approximation, frictional and contact con-
ditions along non planar fault interfaces can be naturally taken into account in contrast to
finite differences, which usually rely on a stress-velocity staggered discretization, where
mixed fault boundary conditions can only be handled through some interpolation. In the
latter case, even for simple planar fault geometries, a large number of points is required in
order to provide the same spatial resolution as SEM, .
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Problem statement
Let us consider an elastic body of volume Ω ⊆ R

nd (nd is the geometrical dimension,
and nd = 2,3 for geophysical applications), whose surface consists of an external surface
∂Ω, on which homogeneous boundary conditions are applied, and an internal surface Γ(x),
accounting for the presence of a fault. Fault boundary conditions will involve, indeed,
potential discontinuities in the kinematic fields (displacement, velocity and acceleration)
across Γ. Ω is assumed to be decomposed into two non overlapping subdomains Ω1 and
Ω2, with a common interface γ ⊇ Γ, such that n is the external normal to Ω2 along Γ.
The restriction of the displacement and velocity to Ωi is denoted as ui(x, t) and vi(x, t)
respectively, for any x ∈ Ωi and t ∈ I = [0,T ]. For any field w, the discontinuity of w across
Γ is defined as δw = w2|Γ−w1|Γ.

The elastodynamic equation, governing the system in Ωi, is:

ρ
∂vi

∂t
= O ·σσσi + fi; σσσi = c : Oui (1)

where ρ is the density, f is the resultant of the external forces by unit volume, c is the
fourth-order elastic coefficients tensor, and σσσ is the stress tensor.

Either a free surface (σσσi ·n = 0) or a rigid boundary (ui = 0) are assumed as boundary
conditions on the ∂Ω∩ ∂Ωi, and the system is supposed to be at rest before t = 0, so that
initial conditions are ui(x,0) = vi(x,0) = 0 in Ωi. Continuity of displacements (δu = 0)
and tractions (δ(σσσ ·n) = 0) may be imposed on γ−Γ, while two simple physical constraints
can be verified on Γ, through a contact condition and a frictional condition.

Let us define the total reaction RT
i on the fault as the sum of a static contribution

R0
i and a dynamic perturbation Ri = −σσσ · n, coming from the elastic bulk. Because of

the action-reaction principle, RT
1 = −RT

2 ≡−RT . Any vector field w̃, defined on the fault,
may be decomposed onto its tangential and normal components w̃ = w̃t + w̃nn. The contact
condition (or Signorini law) requires that either the two sides of the fault are stuck, or, if
opening occurs, both sides act like a free surface. Formally, this yields:

δun ≥ 0 ; RT
n ≤ 0 ; δun RT

n = 0 (2)

The frictional condition (Coulomb law) requires that the system is at rest, until the
tangential reaction reaches a threshold value, proportional to the normal reaction. While
sliding, the tangential reaction is constrained to the threshold, and the slip rate is colinear
with the tangential reaction. The formal statement of this condition is:

Φ(RT
t ,RT

n ) :=
(

RT
t +µRT

n
)

≤ 0 ; δvt = γ̇
RT

t

‖RT
t ‖

; γ̇ ≥ 0 ; γ̇Φ = 0 (3)
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where RT
t and δvt are the absolute values of the tangential reaction and slip rate respec-

tively, and µ is the frictional coefficient. In seismology, a linear slip weakening law [5] i s
generally assumed.

Variational formulation
A variational statement of the elastodynamic problem is introduced. The space of the

admissible displacements and velocities is H 1 = H1 (Ω1)×H1 (Ω2)× I. A solution is
obtained by providing a couple (u,v) ∈

(

H 1)nd ×
(

H 1)nd , satisfying the equation:

(ρv̇,w)+a(u,w) = (f,w)−〈R,w〉 (4)

for any test function w ∈ H 1
0 = H1 (Ω1)×H1 (Ω2). The above expressions in parenthesis

are explicitly written as follows:

(v,w) = ∑
i

∫

Ωi

vi ·widΩ; a(u,w) = ∑
i

∫

Ωi

Owi : σσσ
(

ui)dΩ;
〈

R,wi〉 = ∑
i

∫

γ
w ·Rdγ (5)

Spectral element approximation
Spectral element methods solve the variational statement of the elastodynamic equa-

tion by covering both domains Ωi with hexahedral elements Ωe
i , such that Ωi =

⋃Ni
e=1 Ωe

i ,
and by approximating the spaces H 1 and H 1

0 with the subspaces H h and H h
0 of finite

dimension, for which a systematic derivation of basis functions is provided.

Hexahedra are obtained from a reference element Λ = [−1,1]nd , through an invertible
map Fe : Λ → Ωe local in each element. Thus, the finite dimensional subspaces may be
defined as follows:

H h
t = {gh(x, t) ∈ H 1

t : ∀t, gh|e ◦Fe ∈ span{PN(Λ)}nd} (6)

and

H h
0 = {φφφh(x) ∈ H 1

0 : φφφh|e ◦Fe ∈ span{PN(Λ)}nd} (7)

Here f h|e is the restriction of the function f to the element Ωe
i and PN are polynomials of

degree equal or less than N.

The polynomial subspace can be defined through one of its bases. Let us consider
the zeroes of Gauss-Lobatto-Legendre (GLL) inside the interval [−1,1], and the Lagrange
interpolating function associated to this set of points. For N + 1 GLL points, maximum
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polynomial degree is N; since Lagrange polynomials are independent, they go to make up
a basis for PN([−1,1]). A basis for PN(Λ), indeed, can be obtained by tensorization of 1D
Lagrange polynomials. Integrals, implied in the formulation, can be referred to the single
hexahedra and then, they can be mapped back onto the reference element.

Quadrature formula using GLL points leads finally to a linear system:

MiV̇i = Fext
i +Fint

i (Ui)−BT Ri (8)

Here Ui and Vi are respectively the values of the displacement and velocity, component
by component, at the collocation points, inside the domain Ωi, Mi are the mass matrices
and thay are diagonal. Finally, the matrix BT comes from the boundary integral. Since it
accounts only for the geometrical properties of the common interface, it is independent of
the domain index i, if a matching mesh between Ω1 and Ω2 is assumed.

Let us reduce the discrete equation on the fault:

M̃i V̇ f
i = F̃i −BT Ri (9)

If Hi is the projection operator onto the fault, then BT = HBT , M̃i = HiMiHT
i , V f

i = HiVi
and F̃i = Hi

(

Fext
i +Fint

i (Ui)
)

. Since Hi operator extracts some blocks from the matrices,
to which it is applied, M̃i matrices inherit diagonality and invertibility from their parents
Mi. Finally discontinuity of velocity on the fault can be obtained by subtraction:

δV̇ f
i = δV̇ f ree −

(

M̃−1
2 + M̃−1

1
)

BT R ; δV̇ f ree =
(

M̃−1
2 F̃2 − M̃−1

1 F̃1
)

(10)

Time evolution
A time evolution of the system through a Newmark velocity scheme can be introduced

inside the single domains:

V(n+1)
i = V(n)

i +∆t M−1
i

(

Fint
i

(

U(n+1/2)
i

)

+Fext (n+1/2)
i

)

(11)

U(n+1)
i = U(n)

i +
1
2

∆t V(n)
i +

1
2

∆t V(n+1)
i (12)

where n is the time iteration, associated to a time step ∆t. It is worth to note that both
equations are centered around tn+1/2. The relation involving the discontinuity of velocity
and the reaction on the fault inherits the same centered scheme:
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Figure 1: Slip velocity as function of time and position on the fault. When the crack
progesses slowly, during the nucleation, stopping phases are seen coming back into
the active zone, influencing the dynamics

δV(n+1) = δV(n) +∆t δV̇ f ree(n+1/2)−
1
2

CΓR(n)−
1
2

CΓR(n+1) (13)

where CΓ = ∆t
(

M̃−1
2 + M̃−1

1
)

BT The above equation is a global relation, involving all
the collocation points on the fault. However, because of the diagonality of CΓ, it can
also be referred to the single collocation point. At that stage, the reactions can be solved
as the intersection between this affine relation and the Signorini’s and Coulomb’s graphs.
Once the admissible reaction has been determined, it is injected back into the bulk and
propagated. The non regularity of the contact conditions requires to derive a consistent
high frequency regularization.

Fault dynamics
Let us consider a simple 2D example to describe the evolution of the rupture along

a curved fault. The latter cuts the elastic bulk into two non overlapping domains, whose
borders are perfeclty matched layers. On the fault, homogeneous pre-stress and frictional
values are assumed. Hence, the rupture is initialized by raising up the intial traction to the
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Figure 2: Snapshots of the velocity modulus for a spontaneously propagating crack.
The fault line is individuated by a thicker black line. Because of curvature of the
fault, a rotation effect in the field occurs behind the crack tip.

frictional threshold in a patch enough larger to allow the crack to evolve. During the nu-
cleation, stopping phases influence the crack dynamics by reducing the initial exponential
growth. At the begininning of the propagation, crack progresses at Rayleigh velocity . At
same time, the S-peak in the reaction increases its amplitude, till to reach the threshold
value. In this case, the rupture jumps ahead of the front tip and it accelerates at supers-
hear speeds. In addition, in curved faults the symmetry on the normal reaction is broken
allowing rotation effects to take place behind the crack tip.
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