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Summary  

With the vast advances in space missions using satellites with rigid and 
flexible components, where the accuracy of point are very demanding, the 
requirements for the control system with more efficient controllers has 
increased. In that context, the validity of the controller performance depends 
not only on its good design but also on the knowledge of all states to be feed 
backed in order to improve the control system efficiency. In this paper, a 
Kalman filter methodology is used to recover all the unmeasured states (elastic 
displacement and it’s rates) considering that only the states associated with 
rigid motion are measured (angle and angular velocity). In order to investigate 
the robustness of the filter, one simulates the Kalman filter with a satellite 
model compose of one, two and three flexible modes.  One observes that the 
fidelity of the estimation process increase with the inclusion of more modes 
into the satellite model, which in turn not affect the performance of the 
Kalman filter procedure. 

Introduction 

The use of small satellites has been a fast, simple and of a low cost way of 
reaching the space [1]. However, in the order to conquer the space it’s 
necessary to launch spacecrafts that involves rigid/flexible structures. In that 
type of spacecrafts, the influence of flexibility plays an important role in the 
dynamics behavior as well as in the performance of the Attitude Control 
System (ACS). Other important aspect in the study of the dynamics and 
control of flexible space structure are: the degree of interaction between the 
rigid and flexible motion [2], maintenance of a ACS performance in face the 
uncertainties of the mathematical model [3], damping residual vibrations in 
order to keep pointing precision and states estimations [4]. 
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This paper introduces a state estimation procedure using the Kalman filter 
methodology to recover the flexible coordinates from measurements of the 
rigid part (angle and velocity angular). Section 2 presents a mathematical 
model of a simple spacecraft based on a two flexible Euler-Bernoulli beam 
connected to a rigid hub. The equations of motion are derived considering the 
torque as input, and angle and angular velocity as outputs. Section 3 presents 
the Kalman filter state estimation problem. Section 4 presents the simulation 
of the problem. Section 5 concludes the paper. 

Satellite Mathematical Model  

The satellite mathematical model used is composed of a rigid platform with 
two flexible appendices (see Figure 1). The appendices are identical and 
opposite, being considered as beam connected to the platform, subject to 
rotational and vibrational motion. The equations of motion are derived using 
the Lagrange methodology, starting from the expression of the kinetics and 
potential energy of the system.  

Figure 1: Satellite mathematical model. 

The inertial reference system is represented by the axes 1n̂ , 2n̂ , 3n̂ , which 
coincides with the center of mass of the rigid body characterized by the axes 

1b̂ , 2b̂ , 3b̂ . The vector r is the radius of the rigid body. The vector x 

represents the position along the axis 1b̂  in no deformed form. The vector 
position in the appendage relative to the inertial reference system is given by 
R . The vector of elastic deformation, perpendicular to the axis 1b̂  ,is 

represented by y(x,t), and  θ
�
 is the satellite angular velocity. Therefore, the 

vector velocity of any point in the deformed appendage form, relative to the 
inertial reference system is given for: 
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Equations of Motion 

The total kinetics energy of the system is given by 

{ }�
+θ++θ+ρ+θ= L
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hT dx)xr()xr(y2y2J
2
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T �����          (2) 

where hJ  is the rotary inertial of the hub, ρ is the mass density of the 
appendages, L is the length of the appendage and y(x,t) represents the elastic 
displacement. The potential energy is given by: 
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where E is the modulus of elasticity and I the moment of inertia of the beam. 
The discretization of the system is done using assumed mode method [4]. 
Therefore, the elastic displacement  y(x,t)  is given by 

�
=

φ=
n

1j
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where qj(t) are the generalized coordinates and )x(jφ  are the admissible 
functions. The equations of motion for the rigid )t(θ  and the elastic q(t) 
motion, are found  using the Lagrange formulation: 
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where Fi is the generalized force, and xi is the ith element of the vector (x). 
After derivation the equations of motion in matrix form is given by  

DuKxxM =+
��

              (6) 

where M represents the mass matrix, K is the stiffness matrix and D in known 
as control influence matrix. Transforming Equation (6) in space state modal 
form, one has:  

uD
~

K
~

C
~

M
~ =η+η+η ���              (7) 

Here M~ , C~ , K~  and D~ represents mass, damping, stiffness and control 
influence matrices in modal form, respectively. 
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Kalman Filter Methodoly 

The complete dynamical model is represented by: 

ωηη GA += 11

�
� � � � � � � �����(8)�

where� T
1 ],[ ηη=η � �is�the�modal�coordinates,�ω�is�white�gaussian�noise,�G�is�

matrix�unitary�and�A�is�the�system�matrix�that�relates�the�state�linearly�by�
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The�measured�model�is�given�by:�

ν+η= 1CY � � � � � � � � ������(9)�

the�output�is�the�angle�θ�and�angular�velocity�θ� ,�with�standard�deviation�of��
0.05°�and��0.005°/s,�respectively.�The�matrix�is�C=BT�.�The�term�ν�represents�
a�white�noise�vector�with�the�following�statical�characteristic�

)05.0,0(N °=ν θ �� ,�� )s/005.0,0(N °=ν θ� �

In�the�time�update,�the�states�are�estimates�using�

xAx =
 

�� � � � � � � � ����(10)�

with�initial�conditions� 1k1k x̂x −− = ,�and�the�covariance�is�computed�by�

PCRCPGQGAPPAP 1TTT −−++=
!

� � � � � ����(11)�

with�initial�conditions� 1k1k P̂P −− = .�Equation�(11)�is�known�as�Riccati�equation.��

In�the�measurement�update�the�states�and�covariance�matrix�are�calculated�by��
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where�K�represents�the�Kalman�gain,�and�P�and�x̂�are�the�covariance�and�the�
state�updated.�The�errors�between�the�actual�state�and�the�estimated�state�is��

iii x̂x −=ε∆ � � � � � � � � ����(15)�

Simulations�

In�order�to�investigate�the�robustness�of�the�filter,�it�has�been�done�the�
simulation�with�a�satellite�model�with�one,�two�and�three�elastic�modes.�The�
structural�parameters�are:�radius�r�=�0.3048m,�density�ρ=47.89Kg/m,�damping�

2.0=ς ,�L�=�1.2192m,�E�=�7.735x109�Kg/m2�,�I=�1.293x10-10�Kg*m2��Jh�=�10.84�

Kg*m2,�G=[04x4�,�I4x4�]T,�R=�[0.052�,0.0052�]T,�and� ( )]10,10,10,10[diagQ 6664 −−−−= .�

The�initials�conditions,� 1.00 =θ ,� 01.00 =θ" ,� )]10([diag0P nxn
2−= .�

Figure�2�shows�the�difference�between�the�ideal�state�and�the�estimate�state�
the�“error”�for�the�satellite�model�with�one,�two�and�three�modes.�It�can�be�
seen�that�angular�velocity�estimated,�remains�in�all�modes,�under�the�limits�of��
standard�deviation.�But�for�the�angle�it�is�necessary�50�seconds�for�the�filter�to�
adapt�and�have�a�good�performance.��

��

Figure�2����Errors�for�angle�and�angular�velocity.�
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� Figure�3�Estimation�of�the�elastic�displacement�q1�and�q2.�

Figure�3�shows�a�significant�difference�between�the�model�with�one�and�two�
modes�in�the�flexible�coordinate�q1�and�q2.�However,�that�difference�is�
negligible�for�the�model�with�two�and�three�modes,�which�means�that�the�
satellite�can�be�modeled�at�most�with�two�modes�without�lost�of�accuracy.�This�
is�correct�because,�when�more�modes�are�included,�the�dynamics�of�the�system�
tend�to�stationary�values.�

Conclusions�

In�this�work,�one�applies�the�Kalman�filter�Methodoly�to�estimated�the�
elastic�displacement,�considering�that�the�angle�and�the�angular�velocity�of�a�
flexible�satellite�are�sensed.�Having�in�mind�the�complexity�of�putting�a�sensor�
on�the�elastic�parts�of�the�satellite,�the�application�of�the�Kalman�filter�
mythology�has�been�showed�a�good�approach�to�estimate�indirectly�the�flexible�
parameters�of�a�rigid-flexible�satellite.�That�approach�becomes�more�promising�
when�it�is�necessary�to�feedback�the�elastic�measurements�into�the�control�
system�in�order�to�assure�better�pointing�conditions�and/or�better�system�
performance.�
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