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Summary

This paper presents a comparison of two techniques used with dual reciprocity bound-
ary elements for the analysis of anisotropic cracked plates under transient loads: the sub-
region technique and the dual boundary element method. Characteristics of these tech-
niques are discussed. A numerical example is analysed by both techniques. Although there
is a good agreement between the techniques, special care should be taken in the positioning
of internal nodes.

Introduction

In the recent years, important advances on boundary element techniques applied to
anisotropic materials were published in the literature. For example, plane elasticity prob-
lems were analysed by Sollero and Aliabadi [1], Deb [2], and Albuquerqueet al. [3] [4]
[5] [6], out of plane elasticity problems Zhang [7], tri-dimensional problems by Kögl and
Gaul [8].

For transient crack problems in anisotropic materials, three techniques have been ap-
plied for the crack modelling. The first one is the use of a fundamental solution that con-
siders the existence of a crack on the domain. In this case, the crack doesn’t need to be
discretized as has been shown by Zhang [7] for anti-plane problems. Other possibility is
the division of the domain of the problems into sub-regions so that each crack edge remains
in different sub-regions. Details of this technique was presented by Albuquerqueet al. [3]
[4] for plane problems. The third possibility, named dual boundary element method, is to
use different integral equations for each crack nodes avoiding the division of the domain
into sub-regions.

In this paper, the last two techniques cited in the previous paragraph are compared for
anisotropic problems under transient loads. It is shown that both of them present advantages
and drawbacks. As will be seen, the dual boundary element method still demands some
developments particularly to anisotropic transient problems.

Boundary element formulation for crack problems

The differential motion equation to a point in a linear elastic anisotropic and homoge-
neous body with anΩ domain enclosed by a boundaryΓ can be written as

Ci jkl uk, jl +ρbi −ρüi = 0 (1)

whereCi jkl is the elastic constant tensor,ui is the displacement vector,ρ is the density,bi

is the body force vector, and double dot stands for the second time derivative.
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In the dual boundary element method two integral equations are used to model a crack
problem in order to avoid an ill conditioned system of equations due the coincident nodes
on the crack faces. Assuming continuity of the displacement at the boundary source points,
the displacement integral equation is given by

ci j u j +
Z
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Γ
Ti j u jdΓ =

Z
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l
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whereci j is a constant which depends on the position on the boundary;αm
l is a vector

of M determined coefficients;m= 1, ...,M; Ui j andTi j are the displacement and traction
fundamental solutions, respectively;ûl j andt̂l j are the displacement and traction particular
solution, respectively;

R− stands for integration in the Cauchy sense.

Assuming continuity of strains at the boundary source points, the traction integral
equation is given by
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whereUi jk andTi jk are linear combination ofUk j andTk j, respectively,ni is the normal
vector and the symbol

R
= stands for integration in the Hadamard sense.

In order to obtain the solution of an elastodynamic problem with complex geometry,
boundaryΓ is divided here into boundary elements with tractions and displacements inter-
polated by quadratic shape functions. The final system of equation can be written as:

Hdu = Gdt +ρ
[
HdÛ−G

d
T̂

]
Eü,

Htu = Gt t +ρ
[
HtÛ−Gt T̂

]
Eü, (4)

where subscriptsd andt stand for terms of displacement and traction integral equations,
respectively. MatricesH andG contain the integrals of the product of anisotropic funda-
mental solutions, shape functions and Jacobian of transformation. Vectorst andu contain
boundary traction and displacement components, respectively.Û andT̂ are matrices which
contain particular solutions for displacement and traction, respectively. MatrixE is given
by:

E = F−1, (5)
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whereF is the matrix of approximation functions.

As the inverse ofF matrix is necessary in the formulation, nodes with the same coordi-
nates cannot be used in the assembly of this matrix in order to avoid a singular matrix. So,
a traditional approach when using dual reciprocity together with dual boundary element
method is not to use the crack nodes as dual reciprocity nodes. Owing to this, there is
the necessity of using a shadow of nodes around the crack to replace the absence of crack
nodes in the approximation of inertia terms.

In a compact form, equation (4) can be written as:

Mü+Hu = Gt, (6)

where

M =ρ
[
GT̂−HÛ

]
E. (7)

Using a time step integration, the accelerationü is written in terms of displacementsu
and then, applying the boundary conditions, the matrix equation (4) is rearranged. Finally,
displacements and tractions are computed for each time step.

In the sub-region technique, the domain is divided into sub-domains so that different
crack edges belong to different sub-domains. In this case, only the displacement equation
(2) is used and theF matrix are computed using nodes of all crack edges since they are
integrated following different paths. As the crack nodes are taking into account in approx-
imation of inertial terms, uniformly distributed internal nodes can be used. Besides, as
continuous elements are used in the crack discretization, singular elements, as for example
the traction singular quarter point element (Martinez and Dominguez [9]), can be applied
at the crack tip in order to increase the accuracy of the results. From authors experience,
none of the proposed special elements for crack problems provide an improvement in the
accuracy of dual boundary for anisotropic transient problems.

Numerical example

Consider a plate with a slanted edge crack (see Figure 1) under a uniform tensile stress
applied as a step load at timeτo = 0. A state of plane stress is assumed. The dimensions of
the plate areh = 44mm,w = 32mm,c = 6 mm,a = 22.63mm, andα = 45o.

The material is orthotropic, with the following properties: Young’s moduliE1 = 82.4
GPa andE2 = 164.8 GPa, shear modulusG12 = 29.4 GPa, Poison’s ratioν = 0.4006,
and densityρ = 2450 Kg/m3. The time step used was∆τ = 0.4 µs. The analysis with
dual boundary element method was carried out with 30 boundary elements and 42 internal
points (Figure 2) while with sub-region technique it was using 48 boundary elements and
20 internal points (Figure 3). Figures 4 and 5 show the normalised dynamic stress intensity

2161

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

2161



Figure 1: Plate with a slanted edge crack.

factors obtained by dual boundary element method for modeI and modeII , respectively,
with the results obtained by sub-regions and traction singular quarter point elements. It can
be seen that there is good agreement between the formulations.

Conclusions

This paper presents a comparison between the dual boundary element method and
sub-region technique in the computation of dynamic stress intensity factors for transient
anisotropic plane problems. It was shown that, at the moment, due to the use of dual reci-
procity formulation to approximate the inertial terms, the sub-region technique is more suit-
able, provided that the crack edge nodes can be used as dual reciprocity nodes. However,
the authors has no doubt that dual boundary element method is more robust and efficient
than sub region technique for the most part of boundary element formulations, particularly
when crack propagation is a concern. The application of the dual reciprocity together with
dual boundary is not straightforward. The coincidence of crack nodes causes a singular
F matrix. A standard procedure to overcome this difficulty is not to use crack nodes as
dual reciprocity nodes. Instead internal nodes concentrated near the crack are applied. So,
the dual reciprocity with single region formulation is sensitive to the position of internal
points. Consequently, the sub region technique still remains with some advantages over
single region in dual reciprocity formulations.
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Figure 2: Dual boundary element mesh.

Figure 3: Sub-region boundary element mesh.
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Figure 4: Normalised modeI dynamic stress intensity factors.
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Figure 5: Normalised modeII dynamic stress intensity factors.
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