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Summary 

A meshless method based on the idea of direct multi-elliptic interpolation is 
presented. The solution of the original problem is approximated by a special 
multi-elliptic interpolation involving also the original differential operator. The 
interpolation is performed on a quadtree/octtree cell system. This results in a fast, 
stable solution algorithm, which avoids also the use of large, dense and ill-condi-
tioned matrices. 

Introduction 

Meshless (meshfree) methods have become quite popular in the last decade, 
since one of the most difficult tasks in solving partial differential equations is a 
proper mesh or grid generation, especially in 3D problems. Meshless methods do 
not require any mesh structure, only an unstructured set of points in the computa-
tional domain. The price of this advantage is that the computational schemes are 
often more complicated and/or more expensive from numerical point of view.  

Perhaps the most popular truly meshfree method is the collocation method 
with radial basis functions (RBFs). This approach is based on a scattered data 
interpolation, when a function u is approximated in the following form: 
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(i.e. as a linear combination of shifted RBFs), supplied with the interpolation 
conditions at the interpolation points Nxxx ,...,, 21 : 
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Here the interpolation points Nxxx ,...,, 21  are scattered in a 2D or 3D do-
main Ω  (depending on the problem considered). The radial basis function Φ  
can be chosen in various ways. The most frequently appearing RBFs are the mul-
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tiquadrics ( 22)( crr +=Φ  with a scaling parameter c), the thin plate splines, 

or, more generally, the polyharmonic splines ( rrr m log)( 2=Φ ). Another direc-
tion of generalization is the use of fundamental solutions of certain multi-elliptic 
operators (e.g. )()( 1 crcrKr =Φ , the fundamental solution of the bi-Helmholtz 
operator), see [6,7] for details. 

The simplest way to construct meshfree methods based on scattered data in-
terpolation is to substitute the interpolation function into the original partial dif-
ferential equation and also into the boundary conditions at the interpolation 
points which are located along the boundary (Kansa’s method [8]). This results 
in a generally nonsymmetric system of equations for the unknown coefficients of 
the interpolation. Using a Hermite-based approach, this system can be sym-
metrized [4], which has computational advantages. If the applied RBF itself 
(nearly) satisfies the original partial differential equation to be solved, it is suffi-
cient to use boundary interpolation points only, and we arrive at the boundary 
meshless methods. A variant of this approach, the method of fundamental solu-
tion is based on the fundamental solution of the original partial differential equa-
tion. In usual second-order problems, the fundamental solution exhibits singular-
ity at the origin, which causes numerical difficulties. The problem of the singu-
larity can be avoided by introducing fictitious points outside the domain or by 
regularization. In the case of the Laplace-Poisson equation, the fundamental solu-
tion of the operator )( 2 Ic−∆∆  can be used ( )log()()( 0 crcrKr +=Φ , the sin-
gularities cancel out) instead of the fundamental solution of the Laplacian, with a 
carefully chosen scaling parameter c, see [7]. It is also possible to completely 
avoid the problem of singular functions by using nonsingular general solutions 
(boundary knot method [3]). 

However, almost all of the above approaches suffer from a common compu-
tational disadvantage. Namely, the resulting linear system of equations is large, 
full and severely ill-conditioned in general. Consequently, their application to 
really large scale problems is difficult. The computational cost can – and should 
– be reduced by sophisticated techniques such as domain decomposition; fast 
multipole evaluation [1] or the use of compactly supported RBFs and/or multi-
level techniques [2].  

Our approach is based on the direct multi-elliptic method [6], which provides 
an RBF-like interpolation function using the fundamental solution of various (at 
least fourth order) multi-elliptic operators as a radial basis function. It should be 
pointed out, however, that this approach circumvents the use of large, full and ill-
conditioned matrices by directly solving a higher order auxiliary multi-elliptic 
problem supplied with the interpolation conditions as special boundary condi-

1297
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



tions. The domain of this auxiliary problem can be defined in a practically arbi-
trary way (completely independently of the original problem), which makes it 
possible to apply robust, quadtree/octtree-based multi-level solution methods. 
This results in fast and stable algorithms, even if the distance of some interpola-
tion points is small. The number of arithmetic operations is typically )log( NNO  
where N is the number of interpolation points. 

In this paper, we generalize the idea of the direct multi-elliptic interpolation 
for more general elliptic problems with variable coefficients. 

Meshfree Methods Based on the Direct Multi-Elliptic Interpolation 

The Direct Multi-Elliptic Interpolation Method defines an interpolation func-
tion as a solution of an at least fourth order elliptic equation:  

 

},...,{\in 0 2100 Nx,xxuL Ω=  (3) 
 

(in the sense of distributions), supplied with the interpolation conditions (2). 
There are many possibilities for choosing 0L  e.g. the biharmonic operator 

( ∆∆=:0L ); the bi-Helmholtz operator ( 22
0 )(: IcL −∆= ); the mixed Laplace-

Helmholtz-operator ( )(: 2
0 IcL −∆∆= ), or even higher order operators. The do-

main 0Ω  can be defined to be as simple as possible. Along the boundary of 0Ω , 
any regular (e.g. Dirichlet or Neumann) boundary condition can be prescribed: 
the choice of the boundary condition plays only a minor role in the interpolation. 
The solvability of (3) can be analyzed by variational theory. In contrast to the 
usual second-order partial differential operators, the appearing fundamental solu-
tions are continuous at the origin and the boundary conditions taken at discrete 
points do not destroy the well-posedness of the problem [6,7]. 

To economically solve the problem (2)-(3), multi-level quadtree-based tech-
niques can be applied (octtree-based in 3D). The quadtree (QT-) algorithm de-
fines a non-uniform cell system with local refinements at the interpolation points. 
The whole procedure can be fully automated. Finite volume schemes can easily 
be introduced in QT-cell systems in a natural multi-level way. For details, see 
[5]. 

This interpolation technique is suitable to construct meshfree methods. Sup-
pose, for simplicity, that the original problem is the Dirichlet problem of the 
Poisson equation in a domain Ω : 

 

Ω∂=Ω=∆  along,in 0uufu  (4) 
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Let the domain Ω  and the boundary Ω∂  be discretized by the points 
Ω∈Nxxx ,...,, 21  and Ω∂∈+++ MNNN xxx ,...,, 21 , respectively. Now Kansa’s 

method leads to a tetraharmonic-type interpolation [7]. A much simpler approach 
is the utilization of the idea of the particular solutions. First, the function f is ap-
proximated by a multi-elliptic e.g. a biharmonic interpolation in a larger domain 

Ω⊃Ω0 . Next, using the same QT-cell system, a particular solution U of the 
Poisson equation (4) is constructed in 0Ω . Finally, the solution of (4) is ex-
pressed as wUu += , where w solves the Laplace equation; the function w is 
approximated in a meshfree way by solving the Laplace-Helmholtz equation 

 

},...,{\in 0)( 210
2

MNNN x,xxwIc +++Ω=−∆∆ , (4) 
 

supplied with the modified boundary (interpolation) conditions: 
 

),...,2,1()()()( 0 MNNNkxUxuxw kkk +++=−=  (5) 
 

The crucial point is the proper choice of the scaling parameter c. If c is too 
large, then singularities are generated at the boundary interpolation points. If c is 
too small, then the function w fails to (nearly) satisfy the Laplace equation in the 
middle of the domain. Both cases result is poor approximation.  

Application to Equations with Variable Coefficients 

Now consider the more general elliptic problem: 
 

Ω∂=Ω=σ=  along,in graddiv: 0uufuLu  (6) 
 

with a given, positive function σ . Let the domain Ω  and its boundary be discre-
tized again by the unstructured set of points Ω∈Nxxx ,...,, 21  and 1+Nx , 2+Nx , 
…, MNx + Ω∂∈ , respectively. 

The fundamental solutions of the operator L are generally not radial func-
tions (i.e. not circularly symmetric), and it is hopeless to compute them in an 
economic way. Thus, e.g. the method of fundamental solution or the BEM cannot 
be applied in their original form. However, the idea of the multi-elliptic inter-
polation still works. Let us apply separate multi-elliptic e.g. biharmonic interpo-
lations to the functions f and σ  in a larger domain Ω⊃Ω0 . If the number of 
boundary points (M) is extremely large (their characteristic distance is below the 
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size of the finest QT-cells), then, of course, it is possible to directly solve the 
problem (6) in the same QT-cell system: for doing so, it is necessary to modify 
the finite volume schemes on the QT-cell system, see [5]. Otherwise, a particular 
solution U of (6) is constructed in the domain 0Ω  (using again the existing QT-
cell system), and u is expressed as wUu += , where w satisfies 0=Lw . To ap-
proximate this homogeneous solution in Ω , consider the multi-elliptic interpola-
tion equation which is similar to (4): 

 

},...,{\in 0)( 210
2

MNNN x,xxwIcLL +++Ω=−  (7) 
 

with the modified interpolation conditions (5). Note that Eq. (7) can be split into 
a pair of second-order equations vwIcL =− )( 2 , 0=Lv .This makes the imple-
mentation simpler, since second-order operators have to be discretized only.  

A numerical example: The features of the multi-elliptic method are illustrated 
through the following simple example. Let Ω  be a circle and suppose that 4≡σ  
in the lower half-circle and 1≡σ  in the upper half-circle, which results in a jump 
in the derivatives of the solution of (6) along the diameter: yyxu 4),( =  ( 0≥y ) 
and yyxu =),(  ( 0<y ). The Dirichlet boundary condition was consistent with 
this solution. The boundary was discretized by 32 points and 15 additional points 
were located on the diameter where σ  jumps. Figure 1 shows the approximate 
solutions of (7) on a QT-cell system (supplied with homogeneous Neumann 
boundary conditions). In case (a), logarithmic-type singularities can be observed 
at the interpolation points since the constant c was too high, and the relative error 
(measured in the discrete 2L -norm) was 8.58%. Setting c to 100, the singulari-
ties were removed and the relative error was reduced to 1.01% (case (b)). 

 
 (a) c = 500          (b) c = 100 

Figure 1. Approximate solutions of the test problem on QT-cell systems 
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Remark: Another possible approach is to reconstruct first the boundary of the 
domain Ω  (without any mesh structure) by solving the auxiliary Dirichlet prob-
lem 0|,0 0 ==∆ Ω∂zz  supplied with 1...1 === ++ MNN zz  as an interpolation 

condition. The QT-cells on which the computed values of  z is greater than ε−1  
with a predefined tolerance ε , are accepted as “inner” cells. Along the recon-
structed boundary, interpolated boundary conditions are prescribed (applying a 
multi-elliptic interpolation to the boundary conditions), and now (6) can directly 
be solved on the reconstructed domain, using the same QT-cell system. 
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