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Summary 
 
The antiplane electro-elastic analysis of the interface crack in a bimaterial 

piezoelectric wedge subjected to a pair of concentrated forces and surface charges is 
studied in this paper. The intensity factors at both crack tips are derived analytically. 
The energy density criterion is applied to examine the fracture behavior of the interface 
crack.  

 
Introduction 

 
Due to the capability of the transfer between mechanical and electric energy, 

piezoelectric materials are widely used in smart structures, sensors, and actuators. 
These structures usually involve wedge shape structures at some local regions, where 
the geometry and material are discontinuous. The singular stress field may occur at the 
wedge apex where the crack initiates. Chue et al. [1] and Wei et al. [2] used the Mellin 
transform to obtain the antiplane electro-elastic field and intensity factors of the single-
material and bimaterial piezoelectric wedges subjected to a pair of concentrated forces 
and surface charges. Erdogan and Gupta [3] and Shahani and Adibnazari [4] used the 
Mellin transform and the singular integral equation to study the interface crack in a 
bimaterial elastic wedge under antiplane loadings. In this paper, we study the antiplane 
deformation of the bimaterial piezoelectric wedge with an interface crack subjected to 
a pair of antiplane concentrated forces and inplane electric surface charges. The 
intensity factors of stress, strain, electric displacement and electric field at crack tips 
are derived analytically. The energy density criterion is applied to examine the fracture 
behavior of the interface crack. Due to the mathematical difficulties posed by applying 
the Mellin transform to the piezoelectric wedge problem with an interface crack, the 
crack is assumed to be impermeable for this study. 

 
Problem Statements and Basic Formulations 

 
The structure shown in Fig. 1 is composed of two bonded piezoelectric wedges 

with same wedge angle α and an interface crack AB located on the common edge (θ = 
0o) between r = a and r = b. The crack surfaces are traction-free and impermeable [5]. 
A pair of longitudinal shearing forces F and another two inplane surface charges Q are 
applied on the edges r = h. Because the wedge has an infinite length along the z-axis, 
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this problem becomes a generalized plane deformation problem. Since the 
piezoelectric materials are polarized in the z-direction, only the antiplane elastic field 
coupled with the inplane electric field is considered in the analysis.  

 

 
 

Fig. 1. A bimaterial piezoelectric wedge with an interface crack.  
 
The constitutive equations of stresses (σrz,σθz), strains (γrz,γθz), electric 

displacements (Dr, Dθ) and electric fields (Er, Eθ) can be written as follows 
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where the material constants c44, ε11, and e15 are the elastic stiffness constant, dielectric 
constant, and piezoelectric constant, respectively. The superscript i denotes materials 1 
and 2. The governing equations and the solutions for the antiplane displacement w and 
inplane electric potential φ are  
  

0)(2)(
15

)(2)(
44 =∇+∇ iiii ewc φ ,  0)(2)(

11
)(2)(

15 =∇−∇ iiii we φε  (2) 

0)(2 =∇ iw , 0)(2 =∇ iφ  (3) 
 

The boundary conditions on the edges of the wedge (θ = ±α ) are as follows 
 

( ) ( )hrFrz −= δασθ ,)1( , ( ) ( )hrFrz −=− δασ θ ,)2( ,  
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( ) ( )hrQrD −= δαθ ,)1( , ( ) ( )hrQrD −=− δαθ ,)2(   (4) 
 

where δ is the Dirac-Delta function. Without loss of generality, the distance h satisfies 
the relation hba ≤≤ . The continuity conditions along the bonded interface (θ = 0o) are 
 

( )( ) ( )( )0,0, 21 rwrw =  ,  ( ) ( ) ( ) ( )0,0, 21 rr φφ = , 
( ) ( ) ( ) ( )0,0, 21 rr zz θθ σσ =  ,  ( ) ( ) ( ) ( )0,0, 21 rDrD θθ = ,     ar ≤≤0 , ∞<≤ rb   (5)

  
On the crack surfaces, the traction-free and impermeable conditions are 

 
( ) ( ) ( ) ( ) 00,0, 21 == rr zz θθ σσ ,  0)0,()0,( )2()1( == rDrD θθ

 ,   bra ≤≤  (6) 
 

Solutions 
 
Applying the Mellin transform with integration by parts on Eq. (3), gives  
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where the bar over w denotes the transformed quantity and p is a complex transform 
parameter. The solutions of w  in Eq. (7) and φ  for materials 1 and 2 are 
 

θθ ppCppCw sin)(cos)( 21
)1( +=  ,  θθ ppCppCw sin)(cos)( 65

)2( += , 

θθφ ppCppC sin)(cos)( 43
)1( += ,  θθφ ppCppC sin)(cos)( 87

)2(
+=  (8) 

 
The functions Cj ( j =1~8) can be deduced from Eqs. (4)-(6). Applying the inverse 
Mellin transform on Eqs. (8), w(1) and φ(1) in material 1 are obtained. The residue 
theorem and appropriate path of integration [4] are applied to solve for the integrals. 
Furthermore, the stresses and electric displacements are obtained in the region a ≤ r ≤ 
b of material 1 as follows 
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The function f*(r) in Eq. (12) is derived by the mathematical method proposed in 

[4]. It should be noted that f*(r) is independent of material properties. From Eqs. (9), 
the stress and electric displacement fields are uncoupled and independent of material 
properties. This conclusion is true when the following conditions are satisfied: (1) 
These two wedge angles are equal; (2) A pair of equal longitudinal shear forces are 
applied at same distance; (3) Two equal electric charges are applied at same distance; 
(4) The crack is impermeable. The same conclusion was met in previous studies [6,7]. 
According to the concepts in [3,4] and the uncoupled phenomenon in Eqs. (9), the 
stress and electric displacement intensity factors at the interface crack tips (r = a and r 
= b) can be determined in the following equations:  
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By using the constitutive equations, the strain and electric field intensity factors are:  
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Eqs. (17) and (18) show the coupling behaviors between mechanical and electric 
effects. For studying the crack behavior, the energy density theory [8] is adopted. The 
energy density dW/dV near the crack tip under antiplane mechanical loads and inplane 
electric loads can be expressed by 
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where (r1, θ1) is the localized coordinate system at crack tip B shown in Fig. 1. Note 
that the energy density factor S(i) is independent of θ1 in materials 1 or 2 in this 
antiplane study. 

 
Results and Discussions 

 
The effects of the wedge angle α on the energy density factors are discussed in this 

section. Two typical piezoelectric ceramics PZT-4 and PZT-5H are considered to show 
the variations of S(i)(a) and S(i)(b) at crack tips A and B.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

              
α   (×π) 

 
Fig. 2. Variation of energy density factors with α.  

 
The material properties are c44= 2.56×1010 N/m2, e15= 12.7 C/m2, ε11= 64.6×10-10 

C/Vm for PZT-4 and c44= 2.3×1010 N/m2, e15= 17 C/m2, ε11= 150.4×10-10 C/Vm for 
PZT-5H. The wedge with a=0.01m and b-a=0.01m is subjected to the external force 
F=10 N/m and charge Q=1×10-8 C/m applied at the edges with distance h=0.03m. The 
variations of S(i)(a) and S(i)(b) with α in materials 1 and 2 at both interface crack tips 
are shown in Fig. 2. The energy density factors in material 1 are greater than those in 
material 2.  
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For a given α, the energy density factors at crack tip B (S(1)(b), S(2)(b)) in materials 
1 and 2 are independent of θ1, respectively. It is also true for S(1)(a) and S(2)(a) at crack 
tip A. For example, consider the crack tip B. The crack will propagate along the 
direction of the least fracture resistance SC. The material property SC may represent the 
fracture toughness along the interface θ1=0o or any other directions in the piezoelectric 
material PZT-4 or PZT-5H. 
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