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Summary

When the Knudsen number, typically defined as the ratio of the molecular mean free
path to the characteristic length scale of a dilute gas flow, is larger than approximately 0.1,
the Navier-Stokes equations cease to provide an accurate description of the flow. In this
case, which is frequently encountered in small-scale flows, one must solve the more general
Boltzmann equation. The objective of this work is to develop a method which requires a
lower computational cost than existing methods for low speed flows. To this end, we have
focused on direct numerical methods rather than the more prevalent stochastic molecular
simulation approach known as the Direct Simulation Monte Carlo (DSMC) method. In this
work, the evaluation of the collision integral of the Boltzmann equation is performed using
a quasi-random Monte Carlo integration approach. In addition, interpolation is used to re-
duce the effect of discretization errors. We find that this method leads to accurate solutions
which exhibit excellent conservation properties. Solutions of the Boltzmann equation using
this method are shown to agree well with analytical solutions and the results of molecular
simulation.

Introduction

Efficient numerical techniques for modeling small-scale and low-speed dilute gas flows
are expected to be of increasing importance as micro- and nano-scale engineering becomes
more prevalent. At present, the most widely used method for modeling these flows is
a stochastic molecular simulation method known as the Direct Simulation Monte Carlo
(DSMC) method. (See [3] for an extensive discussion.) Our motivation to seek an alterna-
tive approach stems from the fact that the computational cost associated with DSMC scales
poorly as the mean flow speed decreases or as the desired accuracy increases. For exam-
ple, to estimate the local fluid velocity using DSMC, the computational cost for low Mach
numbers (Ma) scales as Ma−2 [4].

In this paper, we discuss an alternative approach based on a direct numerical solution
of the governing Boltzmann equation
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Here, x is the coordinate in physical space and v is the coordinate in velocity space. The
distribution function f = f (x,v, t) is defined such that f d3xd3v is the expected number
of molecules in the range d3xd3v of physical and velocity space and f1 ≡ f (x,v1, t) ,
f ′ ≡ f (x,v′, t) , f ′1 ≡ f

(

x,v′1, t
)

, where a prime indicates post-collision velocities2. Ad-
ditionally, V is the relative pre-collision speed, Ω is the scattering solid angle, σ is the
collision cross section, F is the force acting on a molecule and m is the mass of a molecule.

1Massachusetts Institute of Technology, Cambridge, MA
2Post-collision velocities depend on the pre-collision velocities and the scattering angle.
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The right side of the Boltzmann equation is typically referred to as the collision integral,
and is, perhaps, the most challenging aspect of solving the Boltzmann equation. For this
reason, much of this paper focuses on methods for evaluating the collision integral.

Method for evaluating the collision integral

The collision integral in the form presented in equation (1) can be evaluated with
Monte Carlo or quasi-random Monte Carlo methods [1], [7]. A more efficient method
can be devised by considering the following alternative form of the collision integral [11],
[12]

[
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]
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where δ′ ≡ δ
(
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(
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′−u∗), δ ≡ δ(v∗−u∗), and δ1 ≡ δ

(

v∗1 −u∗). Here,
and in the remainder of the paper, we denote non-dimensional quantities with stars. These
quantities are non-dimensionalized by using v̄, the most probable thermal speed, as a veloc-
ity scale, λ, the mean free path, as a characteristic length scale and tc = (

√
π/2)(λ/ v̄), the

collision time, as a characteristic time scale. As shown in [11], the above formulation of the
collision integral can be used to derive efficient numerical methods. Their efficiency arises
from performing a type of importance sampling, namely choosing pre-collision velocities
with a probability proportional to the value of the distribution function at those velocities;
compared to Monte Carlo integration of the collision integral in the standard form (1), this
has the effect of reducing the amount of computational effort expended on less probable
collisions. This focus on collisions involving velocities for which the value of the distribu-
tion function is relatively large is shared with DSMC; in fact the resulting method used to
evaluate the collision integral is analogous to DSMC.

By assuming a discrete distribution function, and performing Monte Carlo summation,
this sum can be reduced to the expression [11]

[
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]
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where N ∗2 is the local (non-dimensional) number density, and δγ,r denotes a discrete set
of delta functions centered on the velocity node vγ. The index r runs over all collisions
sampled to evaluate the sum (3), in which vi and v j are the pre-collision velocities and
v′α and v′β are the post-collision velocities. Though not explicitly indicated in (3), vi and

v j are chosen with a probability proportional to the distribution function at these nodes3.
The present work extends this method by adding interpolation to reduce the errors due to
discretization and by using a more efficient quasi-random sampling method to accelerate
convergence [9].

The motivation for interpolation arises from the following considerations. In [11],
only collisions for which both the pre- and post-collision velocities lie precisely on a dis-
cretization node are considered. To reduce the effects of discretization errors, we have

3Assuming uniform node spacing, see [11] for more details.
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relaxed the restriction that all post-collision velocities lie on nodes; instead we estimate the
collision integral at a node as a weighted sum of the number of collisions that terminate
near the node (see [2] for details). At present, we have taken the weights to correspond to
polynomial interpolation coefficients, although other methods are being evaluated.

Spatially homogeneous relaxation

An analytical solution to the Boltzmann equation for spatially homogeneous relaxation
for Maxwellian molecules from an initial distribution shown in figure 1 is given in [5].
Figure 1 shows the analytic and calculated solution for this problem at various times. The
solutions are calculated using 213 nodes in velocity space, and the timestep, number of
samples, and velocity space volume are chosen so as to contribute a negligible amount of
error. The calculated solution provides a very good approximation to the analytical solution
when using cubic interpolation coefficients; the results with closest point interpolation yield
poor results, illustrating the error resulting from discretization effects.
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Figure 1: Evolution of the distribution function with 213 nodes in velocity space

Figure 2 shows a plot of the mean error in the collision integral at time t∗ = 0 versus the
number of samples. The error initially decreases at a rate of about N−1/2, as expected for
Monte Carlo methods. Quasi-random sequences exhibit a convergence rate that is some-
what better, although it does not approach the expected asymptotic value of logd N/N,
where d is the dimensionality of the integral [9]. This is because the error saturates at a
constant value due to the discretization effects4. For calculations with higher accuracy (i.e.
finer discretization), quasi-random integration shows a more significant benefit; in other

4When the convergence to the asymptotic rather than the exact value is considered, convergence with quasi-
random integration exhibits a convergence trend that is closer to the expected one.
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Figure 2: Convergence of the mean error in the collision integral with 213 and 413 nodes
in velocity space using cubic interpolation

words, the relative performance advantage due to quasi-random integration is larger for the
cases that are more computationally expensive. To ensure conservation of mass, momen-
tum and energy, past direct methods for evaluating the collision integral have often relied on
correcting the collision integral or strongly restricting the set of collisions considered. We
have found that cubic interpolation very closely conserves mass, momentum and energy,
thus making artificial methods to ensure conservation unnecessary.

Couette flow

The method used above to calculate the collision integral can be easily adapted to
problems with a spatial dependence. As an example, we consider Couette flow with diffuse
walls [3]. We use an iterative method (as opposed to the more costly explicit time integra-
tion) for obtaining steady-state solutions, as discussed in [13]: At each iteration, we update
the value of the distribution function using an explicit upwind finite difference approach to
discretize the spatial derivative. The boundary conditions require that the net mass flux be
zero at the boundary, and that the distribution function for particles moving away from the
wall be an equilibrium distribution at the wall conditions.

Figure 3 shows a comparison of a Couette flow problem with Kn ≡ λ/L = 0.1, with
L the channel width, and non-dimensional wall velocities of ±0.1. This illustrates that
the results of the present method closely match those of DSMC; the small discrepancy
is expected to diminish with finer discretization. The distribution function is expected to
be discontinuous near the wall for Couette flow problems [13]; at present it is unknown
whether the interpolation method used has an adverse effect upon the accuracy of the so-
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Figure 3: Comparison with DSMC results for Couette flow for Kn = 0.1

lution in this region; this will be further investigated in the future. In addition, the effects
of density variations in (3) are neglected; density variations are expected to be small, and
future work will take these into account.

Conclusion

We have presented an initial investigation of a class of direct numerical methods for
solving the Boltzmann equation with the goal of obtaining efficient solution methods for
low-speed flows. We used the discrete velocity method for evaluating the collision integral
of [11], which provides a good compromise between speed and accuracy. To this, we
have added the use of quasi-random sequences to accelerate convergence and a weighting
method to reduce the degree of discretization error. This appears to have been reduced to
the extent that our solution exhibits excellent conservation properties. Preliminary work
suggests that this method will perform well when used for low-speed flows, although more
investigation is needed to quantify this. Future work will focus on the development of more
sophisticated methods for treating the differential part of (1) (with the collision integral
viewed as a source term), as well as further refinements in evaluating the collision integral.
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