
Overlapping Communication with Computation in Distributed
Parallel FDTD Codes Implemented in Java

C. G. Biniaris1, A. I. Kostaridis1 and D. I. Kaklamani1

Summary

This paper presents some key aspects regarding the overlapping of communication
with useful computations in distributed parallel FDTD codes implemented in the Java
programming language. This overlapping can be achieved due to the formulation of the
FDTD method, which allows the inner mesh points in every sub-region of the
computational domain to be updated in every time step of the algorithm, without any
need for communicating neighboring field values. The process of overlapping
communication with useful computations is made easy in a numerical code implemented
in Java due to the language’s inherent multithreaded nature which allows flexible thread
management mechanisms.

Introduction

The Finite-Difference Time-Domain (FDTD) method is undoubtedly the most
popular numerical method for the numerical solution of electromagnetic problems.
FDTD, as was first proposed by Yee in 1966 [1], constitutes a simple and elegant way of
discretization of the differential form of Maxwell’s equations.

One of the more important advantages of the FDTD method is the ease of its
parallelization. Many parallel codes have been developed in the past, demonstrating
excellent speed- ups [2]. Nevertheless, for many years, the adaptation of the parallel code
in new systems was extremely difficult because these codes were developed taking into
consideration their execution in specific target systems.

Moving away from custom parallel architectures, the current common practice is to
exploit the computing resources of network connected computers. Towards this approach,
several standards and libraries [3],[4] have been proposed to enable the development of
parallel codes with minimum effort. These tools, indeed, take away much of the
complexity related to code parallelization by hiding the underlying inter-process
communication mechanisms from the code developer. However, future distributed
applications should exploit the computing resources of not only a set of workstations
connected to a LAN, but ideally of any PC connected to the Internet.

Towards this goal, there is a strong need for the scientific community to adopt new
tools, architectures and computing paradigms. The Java programming language is the
ideal candidate to cover these demands due to its pure object orientation, its platform

1 National Technical University of Athens, 9, Iroon Polytechniou Str., Zografos Athens, GR-15780 GREECE

1278
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

independence and its multithreading and networking capabilities. These capabilities can
be enhanced by distributed object frameworks, which enable the implementation of a
Java application as a set of distributed objects. Such frameworks provide object location
transparency, hide the communication details from the programmer and enhance Java
serialization mechanisms [5-7]

In the following sections we present some basic concepts regarding the
parallelization of FDTD method. Next, we present aspects related to the overlapping
communication with computation in a distributed parallel two dimensional numerical
code implemented in Java, focusing on thread notification and synchronization
mechanisms. Finally, we give some concluding remarks.

Basic Concepts of FDTD Parallelization

The FDTD algorithm is “data - parallel” and an efficient parallel solution can be
achieved using domain decomposition techniques. A one dimensional decomposition of a
two dimensional FDTD computational domain is depicted in Figure 1 for the case of
TMz mode.

Figure 1. One dimensional domain decomposition of a two dimensional FDTD mesh

The calculation of the field values in the sub-regions is assigned to a set of distributed
objects, each one of which is responsible to handle the field update process of its
allocated sub-region. The size of every sub-region is chosen by a load balancing
algorithm, in order to minimize the hosts idle time during each time step.

Due to the formulation of FDTD algorithm, each tangential E component located on
the shared boundary between two sub-regions is updated in the usual explicit manner
using the values of the neighboring H components. In Figure 1, for instance, the update
process of the Ez component in every time step requires the neighboring Hx and Hy

1279
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

components’ values. Each object has direct access to both Hy components, however one
of the two needed Hx components belongs to the neighboring sub-region. Hence, in every
time step there is a need for communication between objects, in order to exchange the
required data. On the other hand, each object can update independently the H components
in every sub-region without the need for any communication [2].

Overlapping of communication with useful computations

Given that the process of requesting the required H components from the neighboring
sub-regions is independent of the update process of the rest E (inner) components in the
sub-region, these tasks can be assigned to independent threads. As a result, the process of
communication and update of the boundary E components can be executed independently
of the field update process of the inner E components.

For the case of the two dimensional problem depicted in Figure 1, each distributed
object responsible to update the fields in its sub-region creates two inner classes named
UpperCommunicator and LowerCommunicator. The object instantiates the objects of
these two classes according to its needs. For instance, the object responsible to update the
fields in the top sub-region instantiates only the LowerCommunicator object in order to
communicate with its lower neighbor. In the same way, the object responsible to update
the fields in the bottom sub-region instantiates only an UpperCommunicator object, while
every other object instantiates both an UpperCommunicator and a LowerCommunicator
object.

These objects extend the class java.lang.Thread, consequently their functionality is
included in their run() method. Each object of the aforementioned classes is responsible
to perform in every time step the following tasks:
• To call the appropriate method to the proxy of the neighboring object in order to

receive the H required values.
• To receive these values when they become available.
• To update the corresponding E components which lie tangentially on the shared

boundary.
• To inform the main object’s thread, which handles the field update process of the

sub-region, that the update process of these boundary E components has been
completed.

The pseudocode depicted in Figure 2, describes the functionality of each thread. It
has to be ensured that the body of the loop will be executed once in each time step. For
this reason, once each thread enters the body of the loop, it is set to a waiting state,
waiting for the notification by the object to perform its work. Since such a notification
takes place once in each time step, the thread will execute the body of the loop also once
in a time step.

1280
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

Figure 2. The pseudocode of a thread which requests values from neighboring sub-regions

Thread notification mechanisms

In order to enable each thread to exit the waiting state and perform its task in every
time step, a notification mechanism has to be used in order to enable each thread to
execute its task immediately after it is requested. This mechanism is based on the thread
notification capabilities provided by Java.

For the purpose of thread notification, an inner class with the name Synchronizer was
implemented. For each thread, an object of the class Synchronizer is instantiated, serving
as the notification mechanism for the thread in the following manner:

The thread is set in the waiting state by calling the block() method of the
corresponding Synchronizer object. When this method is called, the thread waits on the
Synchronizer object’s monitor due to the fact that the body of the block() method
contains the call to the Thread.wait() method.

In order to cause the thread’s exit from the waiting state, the object’s main thread
calls the wake() method of the Synchronizer object. As soon as this method is called, the
object, that is waiting on the Synchronizer object’s monitor, is notified, consequently the
thread’s block() method returns and the thread performs the rest of its tasks included in
the while loop.

The code of the Synchronizer class is depicted in Figure 3.

1281
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

Figure 3. The code of the Synchronizer class

Thread synchronization mechanisms

In order to be considered by the object’s main thread that the E field update process
for the current time step has been completed, all the E components in the sub-region
(internal and boundary) have to be updated. Since these processes have been delegated to
independent threads, there has to be a synchronization mechanism among these threads.

According to this mechanism, if the E field update process completes before the H
values from the neighboring sub-regions are received and the corresponding E
components are updated, the object’s main thread does not perform any other tasks and
the method which updates the inner E components returns. In this case, the main object’s
method, which monitors the received results from the calls to remote objects, is
responsible to decide when the object will proceed to the remaining tasks for the current
time step, which mainly involve the update of the H components in the sub-region.

In any other case, where the boundary E components have been updated by the other
threads during the update process of the inner components, the object’s main thread is
ready to proceed to the other tasks for the current time step

Conclusions

In this paper we have presented some basic aspects regarding the overlapping of
communication with useful computations in distributed parallel FDTD codes
implemented in the Java programming language. The communication tasks are assigned
to independent threads which are responsible to receive the required data in order to

1282
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

update the field components which lie on the shared boundary between the sub-regions,
while the update process of the inner components takes place.

Our main purpose was to demonstrate that the inherent characteristics of Java,
relevant to thread management and notification, can lead to a straightforward
implementation of a mechanism to overlap communication between distributed objects
with useful computations.

References

1 K. S. Yee (1966): “Numerical Solution of Initial Boundary Value Problems
involving Mawxell’s Equations in Isotropic Media”, IEEE Transactions on Antennas and
Propagation, vol. 14, pp. 302-307.

2 A. Taflove (1995): Computational Electrodynamics: The Finite-Difference Time-
Domain Method, Artech House. Inc.

3 A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam
(1994): PVM: Parallel Virtual Machine – A Users’ Guide and Tutorial for Networked
Parallel Computing, MIT Press.

4 W. Gropp, E. Lusk, and A. Skjellum (1994): Using MPI: Portable Parallel
Programming with the Message-Passing Interface, MIT Press.

5 OMG CORBA (1995) Common Object Request Broker Architecture and
Specification, Revision 2, August 1995, www.omg.org

6 T. Megedanz (1997): “ Mobile Agents – Basics, Technologies, and Applications
(including Java and CORBA Integration)”, Invited Tutorial in IEEE IN Workshop,
Colorado Springs, USA.

7 C. G. Biniaris, A. I. Kostaridis, D. I. Kaklamani and I. S. Venieris (2002):
“Implementing distributed FDTD codes with Java mobile agents”, IEEE Antennas and
Propagation Magazine, 44 (6), pp.115-119.

1283
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

