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Summary 

This paper presents some key aspects regarding the overlapping of communication 
with useful computations in distributed parallel FDTD codes implemented in the Java 
programming language. This overlapping can be achieved due to the formulation of the 
FDTD method, which allows the inner mesh points in every sub-region of the 
computational domain to be updated in every time step of the algorithm, without any 
need for communicating neighboring field values. The process of overlapping 
communication with useful computations is made easy in a numerical code implemented 
in Java due to the language’s inherent multithreaded nature which allows flexible thread 
management mechanisms. 

Introduction 

The Finite-Difference Time-Domain (FDTD) method is undoubtedly the most 
popular numerical method for the numerical solution of electromagnetic problems. 
FDTD, as was first proposed by Yee in 1966 [1], constitutes a simple and elegant way of 
discretization of the differential form of Maxwell’s equations.  

One of the more important advantages of the FDTD method is the ease of its 
parallelization. Many parallel codes have been developed in the past, demonstrating 
excellent speed- ups [2]. Nevertheless, for many years, the adaptation of the parallel code 
in new systems was extremely difficult because these codes were developed taking into 
consideration their execution in specific target systems. 

Moving away from custom parallel architectures, the current common practice is to 
exploit the computing resources of network connected computers. Towards this approach, 
several standards and libraries [3],[4] have been proposed to enable the development of 
parallel codes with minimum effort. These tools, indeed, take away much of the 
complexity related to code parallelization by hiding the underlying inter-process 
communication mechanisms from the code developer. However, future distributed 
applications should exploit the computing resources of not only a set of workstations 
connected to a LAN, but ideally of any PC connected to the Internet. 

Towards this goal, there is a strong need for the scientific community to adopt new 
tools, architectures and computing paradigms. The Java programming language is the 
ideal candidate to cover these demands due to its pure object orientation, its platform 
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independence and its multithreading and networking capabilities. These capabilities can 
be enhanced by distributed object frameworks, which enable the implementation of a 
Java application as a set of distributed objects. Such frameworks provide object location 
transparency, hide the communication details from the programmer and enhance Java 
serialization mechanisms [5-7] 

In the following sections we present some basic concepts regarding the 
parallelization of FDTD method. Next, we present aspects related to the overlapping 
communication with computation in a distributed parallel two dimensional numerical 
code implemented in Java, focusing on thread notification and synchronization 
mechanisms. Finally, we give some concluding remarks. 

Basic Concepts of FDTD Parallelization 

The FDTD algorithm is “data - parallel” and an efficient parallel solution can be 
achieved using domain decomposition techniques. A one dimensional decomposition of a 
two dimensional FDTD computational domain is depicted in Figure 1 for the case of 
TMz mode. 

 
Figure 1. One dimensional domain decomposition of a two dimensional FDTD mesh 

The calculation of the field values in the sub-regions is assigned to a set of distributed 
objects, each one of which is responsible to handle the field update process of its 
allocated sub-region. The size of every sub-region is chosen by a load balancing 
algorithm, in order to minimize the hosts idle time during each time step. 

Due to the formulation of FDTD algorithm, each tangential E component located on 
the shared boundary between two sub-regions is updated in the usual explicit manner 
using the values of the neighboring H components. In Figure 1, for instance, the update 
process of the Ez component in every time step requires the neighboring Hx and Hy 
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components’ values. Each object has direct access to both Hy components, however one 
of the two needed Hx components belongs to the neighboring sub-region. Hence, in every 
time step there is a need for communication between objects, in order to exchange the 
required data. On the other hand, each object can update independently the H components 
in every sub-region without the need for any communication [2]. 

Overlapping of communication with useful computations 

Given that the process of requesting the required H components from the neighboring 
sub-regions is independent of the update process of the rest E (inner) components in the 
sub-region, these tasks can be assigned to independent threads. As a result, the process of 
communication and update of the boundary E components can be executed independently 
of the field update process of the inner E components. 

For the case of the two dimensional problem depicted in Figure 1, each distributed 
object responsible to update the fields in its sub-region creates two inner classes named 
UpperCommunicator and LowerCommunicator. The object instantiates the objects of 
these two classes according to its needs. For instance, the object responsible to update the 
fields in the top sub-region instantiates only the LowerCommunicator object in order to 
communicate with its lower neighbor. In the same way, the object responsible to update 
the fields in the bottom sub-region instantiates only an UpperCommunicator object, while 
every other object instantiates both an UpperCommunicator and a LowerCommunicator 
object. 

These objects extend the class java.lang.Thread, consequently their functionality is 
included in their run() method. Each object of the aforementioned classes is responsible 
to perform in every time step the following tasks: 
• To call the appropriate method to the proxy of the neighboring object in order to 

receive the H required values. 
• To receive these values when they become available. 
• To update the corresponding E components which lie tangentially on the shared 

boundary. 
• To inform the main object’s thread, which handles the field update process of the 

sub-region, that the update process of these boundary E components has been 
completed. 

The pseudocode depicted in Figure 2, describes the functionality of each thread. It 
has to be ensured that the body of the loop will be executed once in each time step. For 
this reason, once each thread enters the body of the loop, it is set to a waiting state, 
waiting for the notification by the object to perform its work. Since such a notification 
takes place once in each time step, the thread will execute the body of the loop also once 
in a time step. 

1280
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



 
Figure 2. The pseudocode of a thread which requests values from neighboring sub-regions 

Thread notification mechanisms 

In order to enable each thread to exit the waiting state and perform its task in every 
time step, a notification mechanism has to be used in order to enable each thread to 
execute its task immediately after it is requested. This mechanism is based on the thread 
notification capabilities provided by Java. 

For the purpose of thread notification, an inner class with the name Synchronizer was 
implemented. For each thread, an object of the class Synchronizer is instantiated, serving 
as the notification mechanism for the thread in the following manner: 

The thread is set in the waiting state by calling the block() method of the 
corresponding Synchronizer object. When this method is called, the thread waits on the 
Synchronizer object’s monitor due to the fact that the body of the block() method 
contains the call to the Thread.wait() method. 

In order to cause the thread’s exit from the waiting state, the object’s main thread 
calls the wake() method of the Synchronizer object. As soon as this method is called, the 
object, that is waiting on the Synchronizer object’s monitor, is notified, consequently the 
thread’s block() method returns and the thread performs the rest of its tasks included in 
the while loop. 

The code of the Synchronizer class is depicted in Figure 3. 
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Figure 3. The code of the Synchronizer class 

Thread synchronization mechanisms 

In order to be considered by the object’s main thread that the E field update process 
for the current time step has been completed, all the E components in the sub-region 
(internal and boundary) have to be updated. Since these processes have been delegated to 
independent threads, there has to be a synchronization mechanism among these threads. 

According to this mechanism, if the E field update process completes before the H 
values from the neighboring sub-regions are received and the corresponding E 
components are updated, the object’s main thread does not perform any other tasks and 
the method which updates the inner E components returns. In this case, the main object’s 
method, which monitors the received results from the calls to remote objects, is 
responsible to decide when the object will proceed to the remaining tasks for the current 
time step, which mainly involve the update of the H components in the sub-region. 

In any other case, where the boundary E components have been updated by the other 
threads during the update process of the inner components, the object’s main thread is 
ready to proceed to the other tasks for the current time step 

Conclusions 

In this paper we have presented some basic aspects regarding the overlapping of 
communication with useful computations in distributed parallel FDTD codes 
implemented in the Java programming language. The communication tasks are assigned 
to independent threads which are responsible to receive the required data in order to 

1282
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



update the field components which lie on the shared boundary between the sub-regions, 
while the update process of the inner components takes place. 

Our main purpose was to demonstrate that the inherent characteristics of Java, 
relevant to thread management and notification, can lead to a straightforward 
implementation of  a mechanism to overlap communication between distributed objects 
with useful computations.  
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