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Summary

The aim of this paper is to propose a new model for porous viscoplastic solids incor-
porating void shape effects. The sound matrix is assumed to obey a simple Norton law
with exponent n. Several previous well-accepted models pertaining to various special cases
are used as references. These models include : (i) that of Gologanu, Leblond and Devaux,
for arbitrary spheroidal voids but an (ideal-)plastic matrix only (n � ∞) ; (ii) that of Le-
blond, Perrin and Suquet, for spherical or cylindrical voids only, but arbitrary n ; (iii) that
of Ponte-Castaneda and Zaidman, for spherical voids but a linearly viscous matrix only
(n � 1). Use is also made of the nonlinear Hashin-Shtrikman bound for voids of arbitrary
shape and arbitrary n, but low triaxialities. The approach used basically consists of looking
for a suitable heuristic expression for the “gauge surface” of the voided material, which is
required to reduce to those corresponding to the reference models in the relevant special
cases. The validity of the model is assessed through comparison between the analytical, ap-
proximate “gauge surface” proposed and that determined by considering a spheroidal RVE
and performing some numerical minimizations of the viscoplastic potential over a large
number of trial velocity fields. Finally, an equation for the void shape evolution is proposed
to complete the constitutive model.

Introduction

An impressive number of models, which cannot all be cited here, have been proposed
for the overall behaviour of porous viscoplastic materials, in order to predict ductile rupture
of metals at high temperatures. In almost all models, the behaviour of the sound matrix is
assumed to be governed by a simple Norton law with exponent n, connecting the local
strain rate d and the local stress σσσ. This constitutive law includes linearly viscous and
(ideal-)plastic materials as special cases, for n � 1 and n � ∞ respectively. The problem is
to define the resulting relation, which must necessarily involve the void volume fraction,
between the overall strain rate D and the overall stress ΣΣΣ.

Only three models, however, try to account for the influence of void shape. The first
one is due to Ponte-Castaneda and Zaidman (PCZ) [1]. It relies on the use of the nonli-
near Hashin-Shtrikman (HS) bound (based on consideration of some “linear comparison
material”) for the overall viscoplastic potential, adopted as an approximate value instead
of a limiting one. The PCZ model is very comprehensive, especially in later versions also
incorporating the influence of the spatial distribution of voids. It nevertheless suffers from
the fact that the HS nonlinear bound, although fully rigorous as a bound, is known to pro-
vide a poor estimate of the overall behavior for high values of the triaxiality (ratio of the
overall mean stress over the overall equivalent stress), when the Norton exponent n is itself
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high. The PCZ model can therefore be considered as a good reference model only for n � 1
(linearly viscous material) or low triaxialities.

The second model incorporating void shape effects is due to Garajeu, Michel and Su-
quet (GMS) [2]. The GMS model relies on direct homogenization of some viscoplastic
voided RVE. It undoubtedly yields better predictions than the PCZ model, except for va-
lues of n close to 1, but nevertheless suffers from several drawbacks. First, in the plastic
case (n � ∞), the GMS model bears a close resemblance to the model of Gologanu, Leblond
and Devaux (GLD) [3], but unfortunately rather in its early version than its final one. The
GLD model, which has gained relatively wide acceptance and applies to spheroidal voids
but plastic matrices only, indeed exists in two versions, the second one [3] being much
better than the first one, as shown by Sovik [4]. Second, the GMS model considers only
prolate cavities, no proposal being made for oblate ones. Finally, the expression proposed
for the necessary evolution equation of the void shape is very inaccurate for deviatoric
stress states, as is evident from reference [3] in the plastic case.

The third model accounting for the influence of void shape is due to Klocker and
Tvergaard (KT) [5]. The KT model uses two “reference” models in some special cases,
namely the GLD model and that of Leblond, Perrin and Suquet (LPS) [6] which applies
to viscoplastic matrices but spherical or cylindrical voids only. In general, the KT model
indisputably gives better estimates than the GMS and PCZ models for both prolate and
oblate voids. Nevertheless, it still suffers from some drawbacks : it does not reproduce the
good approximations provided by the HS nonlinear bound at low triaxialities and the PCZ
model for n � 1.

We look here for an improved model for porous viscoplastic materials incorporating
void shape effects. The approach used is basically similar to that which serves for the deri-
vation of the LPS model [6]. Instead of looking for an approximate analytic expression of
the overall plastic potential, which is a very difficult task, one looks for an expression of the
overall “gauge function” (as defined below). Several classical models pertaining to various
special cases are used as references : (i) the GLD model, applicable to plastic materials
(n � ∞) only but arbitrary void shapes ; (ii) the LPS model, applicable to viscoplastic mate-
rials (n arbitrary) but spherical or cylindrical voids only ; (iii) the PCZ model, applicable to
linearly viscous materials (n � 1) only but arbitrary void shapes. The analytic expression of
the gauge function looked for is required to match the expressions corresponding to these
models in the relevant special cases. A further requirement is that it must match the value
of the overall viscoplastic potential provided by the HS nonlinear bound for arbitrary n but
low triaxialities.
It must be noted that this approach based on “reference” models is quite similar to that used
by Klocker and Tvergaard [5] ; the main novelty is that we require our model to meet two
additional references (the PCZ model for n � 1 and the HS nonlinear bound).

The GLD, LPS and PCZ models

We briefly present here the three reference models. The void volume fraction (porosity)
is denoted f . The voids are assumed to be spheroidal, with axis of symmetry parallel to the
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diraction z. The semi-axis of the voids along this direction is denoted a, and the common
semi-axes along the perpendicular directions x and y, b. The void shape is thus characterized
by the single parameter a

�
b ; prolate voids have a

�
b � 1 and oblate ones a

�
b � 1. Only

axisymmetric loadings with the same axis of symmetry as that of the voids are considered :
the sole non-zero components of the overall stress tensor are thus Σxx � Σyy and Σzz.

The GLD model is applicable to voids of arbitrary shape, but the material is assumed
to be (ideal-)plastic. The yield stress in simple tension is denoted σ0. The expression of
the overall yield function, which extends that of Gurson applicable to spherical voids only,
reads :

F � ΣΣΣ � f � a
b
�
	 C

σ2
0
� Σd � ηΣh

� 2 � 2 � g � 1
� � g � f

�
cosh � κ Σh

σ0

�
� � g � 1

� 2 � � g � f
� 2 � 0 � (1)

Σd
	

Σzz � Σxx � Σh
	

2α2Σxx � � 1 � 2α2
�
Σzz

(Σd is the deviatoric part of ΣΣΣ). In this expression, C, η, g, κ and α2 are parameters de-
pending on f and a

�
b, the detailed expressions of which are given in reference [3]. The

quantity g is of purely geometric nature and plays the role of a “second, fictitious porosi-
ty” ; in the special case of penny-shaped cracks (a

�
b � 0) for instance, it is identical to the

porosity which would result from spherical voids with radius equal to that (b) of the cracks.

The LPS model applies to viscoplastic materials but spherical or cylindrical voids
only. Instead of providing an approximate expression for the overall viscoplastic poten-
tial Ψ � ΣΣΣ � f � n � , it gives an approximation of the overall gauge surface, composed of those
stress tensors S corresponding to some constant, specified value of Ψ. This value is chosen
in such a way that in the plastic case (n � ∞), the gauge surface becomes identical (up to an
unimportant factor) to the yield surface. The gauge surface is described by some equation
F � S � f � n � � 0 where F is the gauge function. Prescribing F � S � f � n � is sufficient to pres-
cribe Ψ � ΣΣΣ � f � n � , since Ψ is a positively homogeneous function of degree n � 1 of ΣΣΣ. For
spherical voids, the equation of the LPS gauge surface reads :

F � S � f � n �	
S2

d � f
�

H � Sm
� � n � 1

n � 1
1

H � Sm
��� � 1 � n � 1

n � 1
f 2 � 0 �

H � Sm
��	 �

1 � 1
n

�
3
2 � Sm � � n � 1

n � n (2)

where Sd
	

Szz � Sxx and Sm
	 1

3 trS denote the deviatoric and mean parts of S. The function
H is chosen in such a way that the model reproduces the exact solution of the problem of
a hollow viscoplastic sphere loaded hydrostatically. A similar expression is proposed for
cylindrical voids in reference [6].

As explained above, the PCZ model was developed for arbitrary values of a
�
b and n,

but in fact provides a good estimate in the whole stress space only for n � 1. The equation
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of the gauge surface proposed then reads :

F � S � f � a
b ��� S2

d � f� 1 � f ��� 1 ��� 1 � 3α1 � � 1 � 3α �1 �! #" 1 � 3α �1
1 � 3α1

S2
d� 9

4
S2

m � 3 � 1 � 3α �1 � SdSm $ � 1 % 0
(3)

where α1 and α �1 are coefficients depending on f and a & b, given in reference [3].

The model proposed

The gauge surface proposed is deduced from the GLD yield function (1) in the same
way as the LPS gauge function (2) from the Gurson yield function. Indeed the problem
(extending an expression valid for n % ∞ to arbitrary n) is the same, the only difference
being the void shape (spherical for the Gurson and LPS models, spheroidal for the GLD
model and here). We thus replace the “cosh” function by 1

2 � H � n ' 1
n ( 1

1
H � and introduce a

factor of n ' 1
n ( 1 in the term �)� g � f � 2 in the equation of the gauge surface :

F � S � f � a
b �� C � Sd � ηSh � 2 � � g � 1 � � g � f � " H � Sh � � n � 1

n � 1
1

H � Sh � $�)� g � 1 � 2 � n � 1
n � 1

� g � f � 2 % 0 � (4)

Sh � 2α2Sxx � � 1 � 2α2 � Szz � H � Sh �*�,+ 1 � 1
n
� κ - Sh - � n . 1

n / n0
This equation matches the reference models in the relevant special cases provided that
the coefficients take suitable values then. This and other considerations lead to general
expressions for the coefficients g, α2, C, η and κ, depending on f , a & b and n. Indeed, the
parameter g being of purely geometric nature (see above), it is logical to ascribe it the
same value as in the GLD model [3], independent of n. The parameter α2 determines the
weighting coefficients of the radial (Sxx) and axial (Szz) stress components in the stress Sh,
which is the essential parameter governing void growth. There is no clear reason either why
it should depend on the matrix rheology. This suggests to also take α2 as independent of n
and given by the same value as in the GLD model [3]. Also, for n % ∞ and n % 1, the GLD
and PCZ models give distinct values κ 1 ∞ 2 and κ 1 1 2 for κ. The following “interpolation”
formula for arbitrary n is then proposed :

κ % κ 1 1 2
n � n � 1

n
κ 1 ∞ 2 (5)

Finally, since the nonlinear HS bound provides a good estimate of that zone of the gauge
surface corresponding to low triaxialities, we enforce coincidence and tangency of the HS
gauge surface and the present one at some typical point in this zone. We thus get complex
expressions (depending on f , a & b and n) for the two remaining coefficients C and η.
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Comparison of approximate and “exact” gauge surfaces and directions of flow

For all values of f , a 3 b and n, a numerical, supposedly exact gauge surface can be
obtained by considering a suitable RVE and performing some minimization of the average
value of the local viscoplastic potential over a large number of trial velocity fields. In prac-
tice, we adopt a spheroidal RVE confocal with the void, and use the family of velocity
fields proposed by Lee et Mear [7], especially adapted to the spheroidal geometry. Figure
1 shows the results obtained for a prolate and an oblate void, typical values of n and a 3 b,
and several values of f , along with the predictions of our model and the KT model.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

f=0.001f=0.01f=0.1

PSfrag replacements

S z
z

4 S xx

Numerical
Model

PCZ

KT

Sm

(a) prolate void : a 3 b 5 5 ; n 5 5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

f=0.001f=0.01f=0.1

PSfrag replacements

S z
z

4 S xx

Numerical
Model
KT

Sm

(b) oblate void : a 3 b 5 1 3 5 ; n 5 5

FIG. 1 – Numerical and approximate gauge surfaces

In order to preserve legibility, the PCZ and GMS gauge surfaces are not represented here.
However, numerical calculations show that the GMS model (for prolate voids only) ove-
restimates the value of Sm at high triaxialities, and that the PCZ model, although nearly
exact for n 5 1, is quite inaccurate for high values of n and the triaxiality, especially for
low porosities.

The direction of the normal to the gauge surface governs, via the “normality rule”, that
of the viscoplastic flow. Figure 2 shows the comparison, in a typical case, of the approxi-
mate and “exact” directions of this normal, for a prolate and an oblate void. The quantity
on the horizontal axis is the angle tan 6 1 7 Sm 3 Sd 8 (in degrees), characterizing position on the
gauge surface, and that on the vertical one is the angle tan 6 1 9Dm 3 7 f Dd 8;: (also in degrees)
where Dd < Dzz = Dxx and Dm < 1

3 trD, characterizing the direction of the normal.

Void shape evolution

To complete the constitutive model, we propose evolution equations for the internal
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FIG. 2 – Directions of normals to the approximate and numerical gauge surfaces

parameters f and S J ln K a H b L (void shape parameter). The evolution equation of f is the
usual one, deduced from incompressibility of the sound matrix. Also, using again the GLD
model (for n I ∞) and the PCZ model (for n I 1) as references, we propose the following
equation for the void shape evolution, where T stands for the triaxiality :

Ṡ I h K e M f M T M n LNK Dzz O Dxx L�P 3 1 Q f
f R 1 Q 3α1 S R 1 Q 3α T1 S

1 Q 3α1 U 3 f R α1 Q α T1 S Dm

h K e M f M T M n L*I 1 P h f K f M n L he K e1 M n L hT K T M n LVM he K e1 M n LWI 3 R α1 Q α T1 S
1 Q 3α1 X 32 Y n Z 1

n
(6)

where the functions h f and hT are deduced from heuristic considerations and comparisons
with numerical calculations, and the function he derives from Eshelby’s famous solution.
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