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Non-axisymmetric I nstabilitiesin Wide-Gap Spherical Couette Flow
R. Hollerbach?

Summary

We consider spherical Couette flow for aspect ratios 0.3 < 3 < 3, and numerically
compute the non-axisymmetric instabilities that arise. We show that they have the op-
posite equatorial symmetry as the basic state, and exhibit a progression from azimuthal
wavenumber m= 6 at 3 = 0.3 to m= 2 at # = 3. We next consider the equilibration of
these modes in the supercritical regime, and show that secondary bifurcations occur, be-
yond which one obtains solutions containing all wavenumbers, not just multiples of mg.
Finally, we include magnetohydrodynamic effects, and show that a surprisingly weak mag-
netic field may already have significant effects, such as switching the equatorial symmetry
of the most unstable modes.

Introduction

Spherical Couette flow is the flow induced in a spherical shell by differentially rotating
the inner and/or outer spheres. Here we will consider only the simplest possible SCF
scenario, namely where the outer sphere is fixed, and only the inner one rotates. The
flow is then determined by two parameters, the aspect ratio 3 = (ro — ri)/ri describing the
geometry, and the Reynolds number Re = Qri(ro, — ri) /v measuring the rotation rate.

For small aspect ratios, up to 3 2 0.25, the first instability (as Reis slowly increased) is
in the form of axisymmetric Taylor vortices. See for example [1] for some of these results.
For larger aspect ratios one can still obtain Taylor vortices, but only if Re is increased
abruptly, or other special initial conditions are used [2,3]. If # > 0.45 though, no Taylor
vortices are possible regardless of how the sphere is spun up.

It is thus of interest to consider what other instabilities might arise in this case. A
number of experiments have been done [4,5,6], which reveal the first instability in this case
to consist of a non-axisymmetric spiral wave, with wavenumbers in the range 3 to 6, de-
pending on the aspect ratio. The linear onset of these instabilities has previously been com-
puted [7,8] at particular aspect ratios, with good agreement with the experimental results.
However, neither of these studies (nor any other work we are aware of) has considered the
nonlinear equilibration of these instabilities in the supercritical regime. Such a study would
be of considerable interest though, as some of the experiments [6] indicate that secondary
mode transitions may occur in the sufficiently supercritical regime. The main purpose of
this work, therefore, is to explore this supercritical regime, and discover whether any such
secondary bifurcations can be obtained numerically as well.

Linear Onset

Figure 1 shows Re. as a function of 3, for the modes m=2 to 6. See also [9]. We note
how the most unstable mode decreases with increasing aspect ratio. The other point to note
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Figure 2: From left to right, contour plots of the angular velocity and merid-
ional circulation of the axisymmetric basic state, and the ¢-component of the non-

axisymmetric instability, at Re, and for 3 = 0.5.
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is that the equatorial symmetry of these modes is always the opposite of the basic state’s.
That is, where the axisymmetric basic state has (Ur,Ug,Uy) symmetric, antisymmetric,
symmetric about the equator, the non-axisymmetric instabilities have the opposite. Figure
2 shows an example of the basic state, and also the instability.

Nonlinear Equilibration

The most thorough set of experiments [6] were done at B = 1/3 and 1/2, where ac-
cording to Fig. 1 the wavenumbers are 6 and 5, respectively. These were also the values
observed in the experiments, and indeed at the same Re (to within 1-2%). In the super-
critical regime the experiments then obtained mode transitions, in which the mode number
is reduced by one. It would thus be of considerable interest to attempt to reproduce this
behaviour numerically. Unfortunately, these particular aspect ratios turned out to be nu-
merically inaccessible; the relatively thin gap width means very high resolution is required
in B, and the relatively high mg means very high resolution is also required in @.

We therefore considered the numerically easier aspect ratios = 0.8, 1.5 and 2.5,
namely in the middle of the mg = 4, 3 and 2 ranges, and in each case pushed Re as high
as possible (between 1.5 and 2 times supercritical). In all three cases it was found that
secondary bifurcations do indeed occur. However, rather than resulting in transitions to the
next lower wavenumber, these bifurcations introduced structure in all modes, but with the
dominant mode remaining the original mp. It is possible of course that a true mode transi-
tion would still occur at even higher supercriticality. We suggest therefore that experiments
should be done at some of these aspect ratios, to look for some of these bifurcations, and
see whether mode transitions do eventually occur.

Magnetic Couette Flow

If the fluid is electrically conducting, and one imposes a magnetic field (which for
simplicity we will take to be purely vertical), one can obtain radically different solutions
[10,11]. The equations to be solved in this case are

%LtJ+ReU-DU=—Dp+D2U+M2(D><b)xép (1)
0%b = -0 x (U x &), @)

where the Hartmann number M measures the strength of the imposed field, and b is the
induced field. What makes this problem particularly interesting is that it is known [11] that
for M = O(100) the non-axisymmetric instabilities have the same equatorial symmetry
as the basic state, rather than the opposite. Somewhere between M = 0 and O(100) the
preferred instabilities must therefore switch from one symmetry to the other. We show
that this transition occurs in the range M = 10, and again suggest further numerical and
experimental work that could be done on this magnetic problem.
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