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Summary

The convective oscillations in a two-layer system under the combined action of buoy-
ancy and thermocapillary effect are studied in the framework of linear stability theory and
by nonlinear simulations. It is shown that the influence of the thermocapillary effect sup-
ports the buoyancy-induced oscillations and can make them experimentally observable in
the form of traveling waves. The thermocapillary oscillations appear in a subcritical way
as standing waves. This instability mode is strongly suppressed by buoyancy, and it can be
observed only under microgravity conditions.

Introduction

The stability problem for the mechanical equilibrium state in a fluid system with an
interface is not self-adjoint (see, e.g. [1], [2]), thus an oscillatory instability is possible in
both cases of buoyancy and thermocapillary convection. The buoyancy oscillatory insta-
bility was discovered by Gershuni and Zhukhovitsky [3]. However, the threshold Grashof
number for the oscillatory instability was higher than that for the monotonic instability,
that is why the oscillatory instability was not observable in experiments. The thermocap-
illary oscillatory instability was discovered by Sternling and Scriven [4] in the case of two
semi-infinite layers and predicted for a real liquid system in [5].

In the present paper we investigate the oscillatory convection under the joint action of
buoyancy and thermocapillary effect.

Formulation of the problem

We consider a system of two horizontal layers of immiscible viscous fluids with dif-
ferent physical properties. The system is bounded from above and from below by two
isothermic rigid plates kept at constant different temperatures (the total temperature drop is
θ). It is assumed that the interfacial tension σ decreases linearly with the increasing of the
temperature: σ � σ0

� αT � where α � 0 �

The following notation is used: ρ � ρ1
�
ρ2 � ν � ν1

�
ν2 � η � η1

�
η2 � κ � κ1

�
κ2 � χ �

χ1
�
χ2 � β � β1

�
β2 � a � a2

�
a1 � Here ρm, νm, ηm, κm, χm, βm and am are, respectively, density,

kinematic and dynamic viscositiy, heat conductivity, thermal diffusivity, thermal expansion
coefficient and the thickness of the m - th layer, where m � 1 (m � 2) corresponds to the top
(bottom) layer. As the units of length, time, velocity, pressure and temperature we choose
a1, a2

1

�
ν1, ν1

�
a1, ρ1ν2

1

�
a2

1 and θ, respectively.

The nonlinear equations of convection in the framework of the Boussinesq approxima-
tion for both fluids have the following form ([1]):
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∂ �vm

∂t
��� �vm � ∇ ���vm

� � em∇pm
�

cm∇2 �vm
�

bmGTm�γ �
∂Tm

∂t
� �vm � ∇Tm

� dm

P
∇2Tm � ∇ � �vm

� 0 �

Here �vm
� �

vmx � vmy � vmz � is the velocity vector, Tm is the temperature and pm is the pressure
in the m - th fluid; �γ is the unit vector directed upwards; b1

� c1
� d1

� e1
� 1; c2

�

1
�
ν, d2

� 1
�
χ, e2

� 1
�
ρ; G � gβ1θa3

1

�
ν2

1 is the Grashof number and P � ν1
�
χ1 is the

Prandtl number for the liquid in layer 1. The conditions on the isothermic rigid horizontal
boundaries are:

z � 1 : �v1
� 0; T1

� 0 � z � � a : �v2
� 0; T2

� s �

where s � 1 (s � � 1) corresponds to heating from below (from above).

The deformation of the interface between two fluids can be usually neglected. In that
case, the boundary conditions on the interface are:

z � 0 : η
∂v1x

∂z
� ∂v2x

∂z
� ηM

P
∂T1

∂x
� η

∂v1y

∂z
� ∂v2y

∂z
� ηM

P
∂T2

∂x
;

v1
� v2;T1

� T2;κ
∂T1

∂z
� ∂T2

∂z
�

Here M � αθa1
�
η1χ1 is the Marangoni number. For the comparison of the actions of

thermocapillary effect and buoyancy, we use the inverse dynamic Bond number

K � M
GP

� α
gβ1ρ1a2

1

�

The problem formulated above has a solution corresponding to the mechanical equi-
librium. We investigate the linear stability of this solution. Also, we perform nonlinear
simulations of two-dimensional flows by means of the finite-difference method (for details,
see [1]).

Influence of thermocapillary effect on buoyancy-induced oscillations

We investigate the onset of the convection in the 47v2 silicone oil - water system with
the following set of parameters: ν � 2 � 0; η � 1 � 7375; κ � 0 � 184; χ � 0 � 778; β � 5 � 66;
P � 25 � 7; a � 1 � 6. This system was used in experiments on the convection in two-layer
systems carried out in [6] that revealed convective oscillations.

The appearance of the “pure” buoyancy convection
�
M � 0 � in each fluid layer is

determined by the ratio of “local” Rayleigh numbers [1]

R2

R1

� κνχa4

β
�
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Figure 1: The neutral curves for a � 1 � 6; R2
�
R1 � 0 � 328; K � 0 �

In our case R2
�
R1

� 0 � 328 � 1, therefore the lowest minimum corresponds to the onset
of the monotonic Fig. 1, line 1). Line 2 corresponds to the linear instability boundary of
the mechanical equilibrium with respect to the excitation of convection in a bottom layer.
Merging of the monotonic neutral curves 1 and 2 leads to the appearance of a long-wave
oscillatory neutral curve 3. However, no oscillatory nonlinear regimes can are observed.

Under the combined action of the thermocapillary effect and the buoyancy, the buoy-
ancy volume forces and thermocapillary tangential stresses act in the opposite (similar)
way with respect to the convection in the top (bottom) layer. Therefore, with the growth
of K the instability boundary for the convection in the top (bottom) layer moves upwards
(downwards). The oscillatory branch expands, and the minimum value of the Grashof num-
ber for the oscillatory instability curve decreases (Fig. 2). For K ��� K � K � � K ��� 0 � 328 �
K �	� 0 � 411 � the minimum value of the Grashof number is achieved at the oscillatory branch
of the neutral curve, therefore the oscillations become observable.

In our opinion, that can give the explanation of the waves found in experiments [6]. If
we estimate α 
 0 � 07 dyn

�
cmK, which is a typical value for a silicone oil (the paper [6]

does not contain measurements of α), we get K � 0 � 33 � which is inside the interval where
the observation of waves is predicted. The dimensional value of the critical temperature
difference θc � 0 � 7 K and the dimensional period of the linear oscillations τc � 670 sec are
in a reasonable coincidence with the experimental data (θexp � 0 � 63 K � 7 min � τexp � 27
min).

The results of the linear theory presented above are justified by the nonlinear simula-
tions. It was found that the oscillatory instability generates traveling waves (see Fig. 3).
Note that the same kind of the motion was observed in the experiments of Degen et al. [6].

Influence of buoyancy on thermocapillary oscillations

Later on, we deal with the system n-octane-methanol, which is an example of a phys-
ical system where the two-layer thermocapillary oscillations have been predicted by heat-
ing from above (s � � 1) (see [5]). The ratios of the parameters are as follows: ν � 1 � 14,
η � 1 � 02, κ � 0 � 698, χ � 0 � 934, β � 0 � 963, Pr � 7 � 84, a � 1 � 6. For these values of pa-

1072
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



Figure 2: The critical Grashof number for the monotonic instabilities (lines 1, 2)
and for the oscillatory instability (line 3).

Figure 3: Snapshots of stream lines for the traveling wave at a � 1 � 6; L � 2π
�
k �

2 � 74; G � 100; K � 0 � 4 � The wave moves from the right to the left.
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Figure 4: The dependences of the critical Marangoni number M on the Grashof
number Gr for oscillatory (line 1) and monotonic (line 2) instabilities.

rameters, the threshold of the oscillatory instability is lower than that of the monotonic
instability as G � 0 [5]. In the case of heating from above, the buoyancy effect prevents
the onset of instability. Therefore, both monotonic and oscillatory instability thresholds
increase with G. It is remarkable that the growth of the oscillatory instability threshold
is faster than that of the monotonic instability (see Fig. 4). One has to take into account
also the monotonic deformational instability mode with the threshold determined by the
formula (2.75) in [1]:

M � sGaδ
2P
�
1
� ηa � � 1 � κa � 2a

3κ � 1 � a � � 1 � ηa2 � � where Ga � ga3
1

ν2
1

� δ � ρ2

ρ1

� 1 �

Comparison of all the three competing instability modes shows that oscillatory insta-
bility cannot be observed in the case of normal gravity g � g0. Under the microgravity,
g � g0 � 10 � 4, the oscillatory instability is predicted in the “window” 1 � 6 � a1 � 2 � 4 cm.
For smaller thicknesses of the layers, the deformational instability will appear, while for
larger thicknesses of the top layer one gets a monotonic non-deformational instability.

A weakly nonlinear bifurcation analysis at G � 0 [5] predicts a subcritical instability
of the equilibrium state with respect to standing waves. This prediction was justified by
our nonlinear simulations. In a cell with the aspect ratio L � 3 � 6, which contains exactly
one period of the wave, we observed time-periodic standing waves. In a longer computa-
tional region, L � 7 � 2, the regular standing wave turned out to be unstable with respect to
the spatiotemporal modluation. We observed the processes of creation and suppression of
vortices that took place in an asymmetric, irregular way (see Fig. 5).

The inclusion of the non-zero Grashof number leads to regularization of the nonperi-
odic oscillations. With a further increase of the Grashof number the oscillations are com-
pletely suppressed.
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Figure 5: Stream lines (a)-(d) for the asymmetric nonperiodic motion; L � 7 � 2;
M � 3 � 07 � 104 �
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