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Summary

Transitions of flow between two corotating disks in an enclosure are investigated nu-
merically and experimentally. The outer cylindrical boundary of the flow field is assumed
being fixed, whereas the inner cylinder (hub) rotating together with the two disks. The
flow is not only symmetric with respect to the inter-disk midplane but also axisymmetric
around the axis of rotation at small Reynolds numbers although it becomes unstable to dis-
turbances at high Reynolds numbers. Two kinds of instability modes are known, one of
which is an axisymmetry-breaking instability mode to yield a polygonal flow pattern in the
radial tangential plane which occurs for small gap ratios, the ratio of the gap between two
disks to the radius of the annulus. The other is a symmetry-breaking instability mode with
respect to the inter-disk midplane while retaining the axisymmetry, which occurs for mod-
erate gap ratios. We focus our attention on the symmetry-breaking instabilty and assume
the axisymmetry of the flow field. We obtain steady axisymmetric flows numerically and
analyze their linear stability. It is found that the steady axisymmetric flow is unstable not
only to stationary disturbances but also to oscillatory disturbances, which results in steady
or oscillatory asymmetric flow, respectively. That is, the symmetry-breaking instability is
classified into stationary and oscillatory symmetry-breaking instabilities. Numerical sim-
ulations are also performed to obtain time-periodic flows, and bifurcation diagrams of the
flow are depicted for various values of gap ratio. The critical Reynolds numbers for the two
symmetry-breaking instabilities are evaluated and a transition diagram is obtained. Our
numerical results are confirmed by experiments.

Introduction

The flow between two corotating disks enclosed in a stationary outer casing has been
investigated as a simple model of computer disk strages, and shown to exhibit a variety of
flow patterns. This flow is also regarded as a short-length case of Taylor-Couette flow in a
cylindrical annulus. The flow has two symmetries, one of which is the axisymmetry around
the rotation axis and the other the reflectional symmetry with respect to the inter-disk mid-
plane. At small Reynolds numbers, the flow is inter-disk symmetric as well as axisymmet-
ric irrespective of the gap ratio, the ratio of the gap between the two disks to the radius of
the annulus. However, at large Reynolds numbers it becomes unstable to time-dependent
axisymmetry-breaking disturbances which results in an appearance of polygonal shape in
the radial-tangential plane for small gap ratios. For moderate gap ratios, it becomes un-
stable to stationary or oscillatory symmetry-breaking disturbances yielding an asymmetric
flow pattern with respect to the inter-disk midplane while retaining the axisymmetry.

Polygonal flow patterns in the radial-tangential plane were observed in experiments by
Lenneman[1]. The objective in his experiments was a reduction of disk flutter in computer
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disk strages. The structure in the flow was investigated by using a flow visualization method
by Abrahamson, Eaton and Koga[2].

An asymmetric flow with respect to the inter-disk midplane was found in experiments
and numerical calculations by Tavener, Mullin and Cliffe[3], who revealed that the asym-
metry arises due to an inter-disk symmetry-breaking (pitchfork) bifurcation from a sym-
metric flow. On the other hand, Herrero et al.[4] clarified that the polygonal flow patterns
appear due to a Hopf bifurcation from the axisymmetric flow. A regime diagram of these
bifurcations in a parameter space consisting of the Reynolds number and gap ratio was ob-
tained by Randriamampianina et al.[5] and a critical gap ratio was determined where the
pitchfork and Hopf bifurcations interchange.

Our objective in the present paper is to clarify the bifurcation structure of the flow
between the two corotating disks and explore the underlying physics of the appearance of
various flow patterns under the assumption of axisymmetric flow field for moderate gap
ratios.
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Figure 1: Configuration and coordinates.

Definition and formulation of the problem

We consider fluid motions between two corotaing disks in an enclosure, where the
outer cylinder of radius r2 is fixed and the inner cylinder (hub) of radius r 1 rotating together
with the two disks with angular velocity Ω (Figure 1). The spacing δr between the edge of
disks and the outer cylinder is neglected theoretically, but is finite in experiments. The gap
between the two disks is s and the gap ratio Γ is defined by Γ = s/(r2−r1). Taking r2Ω and
d = (r2 − r1) as characteristic velocity and length scales, we define the Reynolds number
Re as Re = r2Ωd/ν, where ν is the kinematic viscosity of the fluid. Various flow patterns
appear depending on the set of parameter (Γ,Re). There is another parameter η = r 1/r2, but
the flow is not affected significantly by the value of η so that η = 0.5 is assumed throughout
this paper except for comparison with experimental results.

We assume incompressible flow with the axisymmetry. Then, the velocity uuu = (u,v,w)
in cylindrical coordinates is written in terms of Stokes’ stream function ψ and a function φ

in nondimensional form as u =
1
rβ

∂ψ
∂z

, w = − 1
rβ

∂ψ
∂r

and v =
φ
rβ

where rβ = r + r1/d. The

governing equations of the flow in a frame of reference rotating with angular velocity Ω,
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the continuity and Navier Stokes equations, are written in nondimensional form as

∂ω
∂t

− ω
r2

β

∂ψ
∂z

− 1
rβ

J(ψ,ω)− 2

r3
β

φ
∂φ
∂z

=
1
Re

D2ω− ω
r2

β
, ω =

1
rβ

D2ψ, (1)

∂φ
∂t

− 1
rβ

J(ψ,φ) =
1
Re

D2φ−2(1−η)
∂ψ
∂z

, (2)

where D2 =
∂2

∂r2 − 1
rβ

∂
∂r

+
∂2

∂z2 and J( f ,g) ≡ ∂( f ,g)
∂(r,z)

=
∂ f
∂r

∂g
∂z

− ∂ f
∂z

∂g
∂r

.

The boundary conditions for ψ and φ are given as
∂ψ
∂r

=
∂ψ
∂z

= ψ = 0, φ = 0 on the

inner (r = 0) cylinder and on the two disks (z = 0,Γ), and
∂ψ
∂r

=
∂ψ
∂z

= ψ = 0, φ =−(1+β)

on the outer cylinder(r = 1).

Numerical and experimental methods

We numerically solve the steady-state equations which are obtained by omitting the
time-derivative terms in Eqs. (1) and (2) in order to obtain steady axisymmetric flows ( ψ̄, ω̄,
φ̄). The functions ψ̄, ω̄ and φ̄ are expanded in a series of modified Chebyshev polynomials
which satisfy their boundary conditions. By utilizing the collocation method, we obtain
a set of algebraic equations for the expansion coefficients, which is solved by Newton-
Raphson’s method.

The linear stability of the steady axisymmetric flow is analyzed by adding disturbances
(ψ̂, ω̂, φ̂) to the steady-state solutions (ψ̄, ω̄, φ̄). Substituting ψ = ψ̄ + ψ̂, ω = ω̄ + ω̂
and φ = φ̄ + φ̂ into Eqs. (1) and (2), assuming the time dependence of the disturbances
as ψ̂ = ψ̃eλt , ω̂ = ω̃eλt , φ̂ = φ̃eλt and neglecting the nonlinear terms with respect to the
disturbances, we obatain a set of linear disturbance equations for ( ψ̃, ω̃, φ̃), which is solved
in a similar way to the numerical calculations of the steady-state solution.

We perform numerical simulations to obtain time-periodic flows, where we use finite
difference approximations, Euler’s method for the time derivatives and a fourth-order dif-
ference approximation for spatial derivatives. The Poisson equation is solved by the S.O.R.
iterative method.

We use a visualization method in experiments. Two rotational disks and the outer
cylinder of radius 200 mm are made of transparent acrylic resin for visualization, while the
inner cylinder of radius 50 mm made of vinyl (η = 0.25). The gap between the two disks is
varied in the range of 30 mm - 90 mm. Air is used for the working fluid and the flow field
is visualized by smoke of incense.

Numerical and experimental results

The flow is symmetric with respect to the inter-disk midplane at small Reynolds num-
bers. A typical example of symmetric flow patterns in the meridian section is shown in

1066
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



(a) (b)

r

r

0 1

0.3

0.5

0.6

r

r

0 1

0.3

0.5

0.6

Figure 2: Flow patterns in the meridian section. Γ = 0.6, η = 0.5. (a) Re = 950, (b)
Re = 1200.

Figure 2 (a) for Re = 950 and Γ = 0.6, in which we observe two large vortices having the
same extent and opposite sense with each other. The symmetry is broken due to an instabil-
ity at large Reynolds numbers. An example of such an asymmetric flow pattern is depicted
in Figure 2 (b) for Re = 1200, where one large vortex occupies major part of the meridian
section than the small one.
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Figure 3: Bifurcation diagrams. η = 0.5. w1: axial velocity at the point (r,z)=(0.8,0.5).
Solid line: stable steady-state solution. Dashed line: unstable steady-state solution. U:
Hopf bifurcation point. (a) Γ = 0.60, (b) Γ = 0.69, (c) Γ = 0.694, (d) Γ = 0.720.

In order to analyze the bifurcation structure of the flow, we choose the axial velocity
w1 at a point (r,z)=(4/5,Γ/2) (P1 in Figure 1) as a characteristic quantity which manifests
the magnitude of asymmetry in the flow field. The bifurcation diagram is shown in Figure
3 (a) for Γ = 0.6, where solid and dashed lines indicate stable and unstable steady-state so-
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lutions (steady flows), respectively. There is only one stable symmetric solution for small
Reynolds number smaller than the critical value Rec = 966.1, at which the symmetric so-
lution becomes unstable and two stable asymmetric solutions appear due to a supercritical
pitchfork bifurcation.
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Figure 4: Transition diagram. η = 0.5. Filled circle: pitchfork bifurcation point (present
result), Cross: pitchfork bifurcation point (Randriamampianina et al. (2001)), Filled trian-
gle: Hopf bifurcation point, Filled square: saddle-node bifurcation point. Region P: steady
symmetric flow. Region Q: steady asymmetric flow. Region R: stable steady symmetric
and asymmetric flows. Region S: oscillatory flow. (a) Whole diagram, (b) Enlargement.

The bifurcation structure is almost independent of Γ in the range of 0.3 � Γ � 0.68.
However, as the gap ratio Γ increases up to about 0.688, the bifurcation structure changes
from supercritical to subcritical and the flow becomes unstable not only to stationary dis-
turbances but also to oscillatory ones. We show bifurcation diagrams for Γ = 0.69, 0.694
and 0.720 in Figures 3 (b), (c), (d), respectively. In Figure 3 (b), S and T indicate pitchfork
bifurcation points and the point U is a Hopf bifurcation point. The critical value indicated
by S becomes larger while the one by T becomes smaller as Γ increases. After getting
together, the two bifurcation points disappear to yield two saddle node branches BQD and
CRE, while the point U (Hopf bifurcation point) remains almost unmoved. The branch
EUF indicates oscillatory flows in Figure 3 (d).

We evaluated the critical Reynolds numbers for the pitchfork and Hopf bifurcations
in the range of 0.3 � Γ � 0.72 and obtained a transition diagram as summarized in Figure
4 (a). In this diagram, the flow is always steady and symmetric with respect to the inter-
disk midplane in region P, whereas in region Q the steady symmetric flow is unstable and
two steady asymmetric flows are stable. Figure 4 (b) is an enlargement of Figure 4 (a). It
is seen in this figure that the critical Reynolds number for the Hopf bifurcation becomes
smaller than that for the saddle node bifurcation for Γ > Γ c = 0.712. In region R, not only
two steady asymmetric flows but also the symmetric flow is stable, and oscillatory flow is
possible in region S.

Discussion

Researches on the condition and the mechanism for appearances of flow with a polygo-
nal shape in the radial-tangential plane are important and interesting, which are in progress
in our laboratory and will be presented at the symposium in ICCES’04.
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Figure 5: Flow pattern in the meridian plane. Γ = 0.3, η = 0.25. (a), (c) Experiment. (b),
(d) Numerical calculation. (a) Re = 1600, (b) Re = 1600, (c) Re = 2200, (d) Re = 2200.
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