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Summary

Based on methods from bifurcation theory, we propose an efficient tool to analyze
numerically obtained streamline patterns in steady vortexbreakdown in a closed cylinder
with two rotating covers. We show that the streamline patterns for small ratios of the
angular velocities of the lid are organized around two codimension three degeneracies.

Introduction

Vortex breakdown is the creation of a secondary flow structure on a vortex axis. Vortex
breakdown occurs in a number of important situations such aswingtip vortices and swirl
burners. A very useful set-up for experimental and computational studies of vortex break-
down is a cylindrical container filled with fluid where one or both of the covers are rotating
[4, 5]. The rotating covers create a main vortex along the cylinder axis, which may exhibit
one or more vortex breakdowns of bubble type. In a large rangeof parameters, the flow
is axisymmetric and hence it suffices to consider the intersection of the flow field with a
meridional plane. Examples are shown in fig. 1. The parameters characterizing the problem
are

Re=
Ω1R2

ν
, h =

H
R

, γ =
Ω2

Ω1
, (1)

whereΩ1,Ω2 are the angular velocities of the bottom and the top cover,R,H are the radius
and height of the cylinder, andν is the viscosity of the fluid.

Figure 1: Typical topologiesof iso-curvesof ψ in a meridional plane for different combi-
nationsof theparameters(1). The line to the left is thecylinder axis.

To analyzethecreation and interaction of thebreakdownbubblesasthesystem param-
etersarevaried, atopological approachhasturned out to bevery useful. From axisymmetry
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and incompressibility it follows that a streamfunctionψ(r,z) (wherer ≥ 0 is the radial vari-
able andz is the axial variable) exists such that the intersection between the streamsurfaces
winding around the axis is given by iso-curves ofψ. Using bifurcation theory, it is pos-
sible to classify possible changes in the flow patterns. For previous applications to vortex
breakdown, see e.g. [2].

The purpose of the present paper is to perform a bifurcation analysis in dependence
of the three system parameters in the region where the flow is steady, and for small values
of the rotation ratioγ. We develop a systematic way of analyzing numerical simulations in
terms of bifurcation theory.

III

III

� ����
����

�	 
����

� ��
� �� ��� ��� ��

���� ��

  !
" "# $%&'()*+ ,-

./ 0 012 234 45 67
89:;< <= >?

@ABCDEFG
H HIJ JK L LMN NO PQR RSTU VWXYZ[

\ \]^ _̂
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Figure 2: Abstract bifurcation diagrams. As in fig. 1, the vertical line on the left is the
axis. Panel I: Codimension one bifurcations. Case (a) is bubble creation, case (b) is bubble
merging. Panel II: Codimension two bifurcation. Panel III:Typical slices in a codimension
three bifurcation diagram.
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Mathematical preliminaries

The creation of new flow patterns is governed by local properties of the streamfunction.
When certain combinations of derivatives ofψ are zero at a point, the flow pattern may be
degenerateor structurally unstable. Here, arbitrarily small changes ofψ may give rise
to changes in the patterns. A degeneracy is associated with an integer, thecodimension,
which essentially measures the number of degeneracy conditions which are fulfilled. A
degeneracy of codimensionn will generically occur only in systems withn free parameters,
as the determination of such a point may be found by considering the degeneracy conditions
as equations in then free parameters.

From the theory of normal forms, diagrams for bifurcations close to the rotation axis
can be obtained [1], the result is shown in fig. 2. The parameters µ,ci shown in fig. 2 are
formal mathematical quantities which can be expressed as complicated functions of the
derivatives ofψ. Here we consider a regime where there is a unique steady state. In such
a case, the mathematical parameters are functions of the physical parameters. The theory
also gives the degeneracy conditions: Withw = −∂ψ/∂r denoting the axial velocity, a
degeneracy of codimensionn occurs at a point on the axis, say(r,z) = (0,0), if

w(0,0) = 0,
∂kw
∂zk

(0,0) = 0, k = 1. . .n−1,
∂nw
∂zn (0,0) 6= 0. (2)

Numerical method and results
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Figure 3: Bifurcation diagram forγ = 0.

Using the finite-difference method developed in [6] numerical simulations are per-
formed on a(h,Re) grid for fixed values ofγ. The grid spacing is typically∆h = 0.05 and
∆Re= 15. Simulations are performed until a steady state has been reached. For this state,
the axial velocity at the axiswa(z) = w(0,z) is extracted. Letzf (h,Re) denote a zero of
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the derivative,w′
a(zf (h,Re)) = 0 and consider the functionwa(zf (h,Re)) on the parameter

plane. Letting Matlab draw the solution curve in the parameter plane towa(zf (h,Re)) = 0,
a curve of codimension one points is determined, according to eq. (2). Typically there are
several zeroes ofwa(z), and each must be treated separately, as they correspond to bifurca-
tions different places on the cylinder axis. The two kinds ofbifurcations, bubble creation
(a) and bubble merging (b) can in principle be distinguishedby computing the sign ofw′′

a at
the degeneracy. For practical purposes, however, a visual inspection of sample simulations
has been found to be sufficient.
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Figure 4: Bifurcation diagram forγ = 0.012.

Proceeding in this way, the bifurcation diagram forγ = 0 shown in fig. 3 is constructed.
The lower curve marks the creation of a breakdown bubble, andthe middle curve is the
creation of a second bubble at a lower point on the axis. The two bubbles may merge in a
type (b) bifurcation, creating a single large bubble with aninner figure-eight structure. The
latter bifurcation takes place at the highest curve.

Increasingγ, the two bubble creation curves approach each other, and atγ1 = 0.0110
they meet at a single point(h1,Re1). Increasingγ slightly beyondγ1, a bifurcation diagram
like fig. 4 occurs. In this diagram, two points of codimensiontwo appear, where three
bifurcation curves meet. The local structure of the bifurcations close to these points are
as indicated in fig. 2 II. The bifurcation diagram includes a bifurcation curve of codimen-
sion one bifurcations off the cylinder axis, namely the merging of a saddle and a center
in a saddle-node bifurcation. This bifurcation curve join the two codimension points. The
numerical procedure for locating this curve differs from the procedure for locating bifurca-
tions at the cylinder axis and has not been automated to the same extent. The details will
appear elsewhere [3].

The change in the bifurcation diagram atγ1 can be understood as a codimension three
phenomenon. For a fixed value ofγ, the physical(h,Re) plane is mapped to the mathemat-
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Figure 5: Detail of the bifurcation diagram forγ = 0.0675. A new codimension two point
appears in the right top corner where two bifurcation curvesmerge.

ical (c1,µ) plane of fig. 2 II. If this mapping folds the physical plane into the mathematical
plane, it is not difficult to show that a generic possibility for a sequence of bifurcation di-
agrams are indeed qualitatively like figs. 3 – 4. The extra degeneracy condition is that a
derivative of a mathematical parameter with respect to a physical parameter is zero.

Increasingγ to 0.0675, a bifurcation diagram for which a detail is shown in fig. 5 oc-
curs. The leftmost codimension two point from fig. 4 has movedupwards and out of the
diagram, and two new codimension two points are created in a bifurcation we do not touch
upon here, one of which appear in the top right corner of fig. 5.As γ is increased further,
the codimension two points move together and touch the primary bubble creation curve at
γ2 = 0.0750. For higher values ofγ, the bifurcation diagram typically looks like fig. 6. We
have not performed simulations beyond this value ofγ. The change happening atγ2 is also a
codimension three phenomenon, this time associated with the bifurcation diagram in fig. 2
III. It is possible to find a series of planes moving through the three-dimensional mathe-
matical parameter space where the intersection with the bifurcation surfaces qualitatively
match figs. 5 – 6, but this time with no folding.

Conclusions

The topological approach to patterns in fluids provides a theoretical framework to gen-
erate catalogs of possible streamline patterns and how theychange. The concept of de-
generacy and codimension give useful terms to understand the organization of bifurcation
diagrams, and efficient tools for analysis of numerical datacan be developed on the basis
of the theory. In the present problem there are three free parameters, and hence bifurcations
of codimension up to three are of interest. Indeed, we find at least two codimension three
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Figure 6: Bifurcation diagram forγ = 0.08.

points which organize the bifurcation diagrams. From a physical point of view, the sensitiv-
ity of the vortex breakdown to changes in the rotation rate isremarkable. A mathematical
indicator of this is the presence of codimension three points very close to one another. A
small change in the settings may move them together, creating a point of codimension four
or higher. Thus, further additions to parameters governingchanges in the set-up may give
rise to new bifurcation phenomena.
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