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Bifurcation of vortex breakdown patterns
M. Brgns, A. Bisgaard

Summary

Based on methods from bifurcation theory, we propose anigfti¢ool to analyze
numerically obtained streamline patterns in steady vdsteakdown in a closed cylinder
with two rotating covers. We show that the streamline pattdor small ratios of the
angular velocities of the lid are organized around two catfigion three degeneracies.

Introduction

\ortex breakdown is the creation of a secondary flow str@obura vortex axis. Vortex
breakdown occurs in a number of important situations suchiagtip vortices and swirl
burners. A very useful set-up for experimental and comymriat studies of vortex break-
down is a cylindrical container filled with fluid where one atb of the covers are rotating
[4, 5]. The rotating covers create a main vortex along thindgr axis, which may exhibit
one or more vortex breakdowns of bubble type. In a large rafigarameters, the flow
is axisymmetric and hence it suffices to consider the int¢ime of the flow field with a
meridional plane. Examples are shown in fig. 1. The parameteracterizing the problem
are
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whereQj,Q, are the angular velocities of the bottom and the top cd¥ét, are the radius
and height of the cylinder, andis the viscosity of the fluid.

Figure 1: Typical topologies of iso-curves of Y in a meridional plane for different combi-
nations of the parameters (1). Thelineto the left is the cylinder axis.

To analyzethe creation and interaction of the breakdown bubbles as the system param-
etersarevaried, atopol ogical approach hasturned out to be very useful. From axisymmetry
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and incompressibility it follows that a streamfunctip(r, z) (wherer > 0 is the radial vari-
able andzis the axial variable) exists such that the intersectiowben the streamsurfaces
winding around the axis is given by iso-curvesiaf Using bifurcation theory, it is pos-
sible to classify possible changes in the flow patterns. Fevipus applications to vortex
breakdown, see e.g. [2].

The purpose of the present paper is to perform a bifurcatiatyais in dependence
of the three system parameters in the region where the floteaslg, and for small values
of the rotation ratioy. We develop a systematic way of analyzing numerical sinariatin
terms of bifurcation theory.
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Figure 2: Abstract bifurcation diagrams. As in fig. 1, the verticaldion the left is the
axis. Panel I: Codimension one bifurcations. Case (a) ibleutreation, case (b) is bubble

merging. Panel II: Codimension two bifurcation. PanelTipical slices in a codimension
three bifurcation diagram.
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Mathematical preliminaries

The creation of new flow patterns is governed by local progedf the streamfunction.
When certain combinations of derivativesypfire zero at a point, the flow pattern may be
degenerateor structurally unstable Here, arbitrarily small changes df may give rise
to changes in the patterns. A degeneracy is associated withteger, thecodimension
which essentially measures the number of degeneracy e@mglitvhich are fulfilled. A
degeneracy of codimensiorwill generically occur only in systems withfree parameters,
as the determination of such a point may be found by consigéiie degeneracy conditions
as equations in thefree parameters.

From the theory of normal forms, diagrams for bifurcatiolose to the rotation axis
can be obtained [1], the result is shown in fig. 2. The pararagte; shown in fig. 2 are
formal mathematical quantities which can be expressed amplicated functions of the
derivatives ofiy. Here we consider a regime where there is a unique steady $tasuch
a case, the mathematical parameters are functions of tregahparameters. The theory
also gives the degeneracy conditions: With= —0y/0r denoting the axial velocity, a
degeneracy of codimensioroccurs at a point on the axis, s@yz) = (0,0), if

okw "w
W(0,0)=0, Z(0,0)=0 k=1..n—1, =(0.0)#0. @)

Numerical method and results
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Figure 3: Bifurcation diagram foy = 0.

Using the finite-difference method developed in [6] numergimulations are per-
formed on ah,Re) grid for fixed values of. The grid spacing is typicall$h = 0.05 and
ARe= 15. Simulations are performed until a steady state has lezated. For this state,
the axial velocity at the axiw/z(z) = w(0,2) is extracted. Leks(h,Re) denote a zero of
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the derivativew,(zs (h,Re)) = 0 and consider the functiom,(z; (h,R€)) on the parameter
plane. Letting Matlab draw the solution curve in the paramnplane tow,(z: (h,Re)) =0,
a curve of codimension one points is determined, accordiragjt (2). Typically there are
several zeroes afi;(z), and each must be treated separately, as they correspoifidrtab
tions different places on the cylinder axis. The two kind®ifdircations, bubble creation
(a) and bubble merging (b) can in principle be distinguisiiedomputing the sign o at
the degeneracy. For practical purposes, however, a visséction of sample simulations
has been found to be sufficient.

2400

2200F

2000F

= I
o ®
o S
S S
T T

Reynolds number, Re
=
S
o
(=)
T

1200

1000F

800

1 15 2 25 3
Aspect ratio, h

Figure 4: Bifurcation diagram foy = 0.012.

Proceeding in this way, the bifurcation diagramyet 0 shown in fig. 3 is constructed.
The lower curve marks the creation of a breakdown bubble th@dniddle curve is the
creation of a second bubble at a lower point on the axis. Tlebtwbbles may merge in a
type (b) bifurcation, creating a single large bubble withrarer figure-eight structure. The
latter bifurcation takes place at the highest curve.

Increasingy, the two bubble creation curves approach each other, apd=a0.0110
they meet at a single poifih;, Re ). Increasingy slightly beyondy;, a bifurcation diagram
like fig. 4 occurs. In this diagram, two points of codimenstao appear, where three
bifurcation curves meet. The local structure of the biftime close to these points are
as indicated in fig. 2 1l. The bifurcation diagram includesfafgation curve of codimen-
sion one bifurcations off the cylinder axis, namely the nreggf a saddle and a center
in a saddle-node bifurcation. This bifurcation curve jdie two codimension points. The
numerical procedure for locating this curve differs frora tirocedure for locating bifurca-
tions at the cylinder axis and has not been automated to the satent. The details will
appear elsewhere [3].

The change in the bifurcation diagramyatcan be understood as a codimension three
phenomenon. For a fixed valueyfthe physicalh, Re) plane is mapped to the mathemat-
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Figure 5: Detail of the bifurcation diagram for= 0.0675. A new codimension two point
appears in the right top corner where two bifurcation cundesge.

ical (c1, ) plane of fig. 2 II. If this mapping folds the physical planedthe mathematical
plane, it is not difficult to show that a generic possibilibr &t sequence of bifurcation di-
agrams are indeed qualitatively like figs. 3 — 4. The extraedegacy condition is that a
derivative of a mathematical parameter with respect to aipghy/parameter is zero.

Increasingy to 0.0675, a bifurcation diagram for which a detail is showffig. 5 oc-
curs. The leftmost codimension two point from fig. 4 has mowpdards and out of the
diagram, and two new codimension two points are created ifuechtion we do not touch
upon here, one of which appear in the top right corner of figA®y is increased further,
the codimension two points move together and touch the pyitmabble creation curve at
y2 = 0.0750. For higher values gf the bifurcation diagram typically looks like fig. 6. We
have not performed simulations beyond this valug dthe change happeningytis also a
codimension three phenomenon, this time associated vathitbrcation diagram in fig. 2
[ll. It is possible to find a series of planes moving througé three-dimensional mathe-
matical parameter space where the intersection with thedafion surfaces qualitatively
match figs. 5 — 6, but this time with no folding.

Conclusions

The topological approach to patterns in fluids provides arigcal framework to gen-
erate catalogs of possible streamline patterns and howdha&yge. The concept of de-
generacy and codimension give useful terms to understandrganization of bifurcation
diagrams, and efficient tools for analysis of numerical data be developed on the basis
of the theory. In the present problem there are three frespeaters, and hence bifurcations
of codimension up to three are of interest. Indeed, we findastltwo codimension three
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Figure 6: Bifurcation diagram foy = 0.08.

points which organize the bifurcation diagrams. From a ayoint of view, the sensitiv-
ity of the vortex breakdown to changes in the rotation rateimsarkable. A mathematical
indicator of this is the presence of codimension three gointy close to one another. A
small change in the settings may move them together, ceatoint of codimension four
or higher. Thus, further additions to parameters goveroiranges in the set-up may give
rise to new bifurcation phenomena.
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