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Summary

The singular stress fields around the vertices of multi-material wedges with arbitrary
geometries and material combinations are analyzed by the scaled boundary finite-element
method. The complete singular stress fields including: orders of singularity; stress intensity
factors;T -stresses and higher-order terms in the asymptotic expansions; power-logarithmic
singularities and angular distributions of stresses, are obtained in a single method. The
singular functions are represented analytically and are not evaluated close to the singular
point in determining the stress intensity factors, leadingto high accuracy and simplicity.

Introduction

The novel scaled boundary finite-element method [1, 2] is applied to analyze the stress
fields in multi-material wedges. The boundary of a multi-material wedge, excluding the
straight surfaces forming the vertex, is discretized with elements. In the circumferential
directions parallel to the boundary, where the response varies smoothly, the solution is dis-
cretized based on the standard finite element formulation. In the radial direction passing
through the vertex, where the stress singularities occur, an analytical solution is obtained
without anya priori assumptions. The semi-analytical solution of the completestress field
includes not only singular stress andT -stress terms but also higher-order terms. The tran-
sition between power and power-logarithmic singularitiesis accurately represented.

Summary of The Scaled Boundary Finite-Element Method

A so-called scaling centreO is chosen in a zone from which the total boundary must
be visible (Fig. 1a). The boundaryS is discretized with line elements. The geometry of an
element is interpolated using the mapping functions[N(η)] in the local coordinateη and
the nodal coordinates{x}, {y}. The domainV is described by scaling the boundary with a
dimensionless radial coordinateξ pointing away from the scaling centreO (x̂0, ŷ0). ξ = 0
at O andξ = 1 on the boundary is chosen. A point ( ˆx, ŷ) inside the domain is expressed as

x̂(ξ ,η) = x̂0 + ξ [N(η)]{x}; ŷ(ξ ,η) = ŷ0 + ξ [N(η)]{y} (1)

ξ , η are called thescaled boundary coordinates in two dimensions. They resemble the
polar coordinates ˆr andθ . The boundaryS in Fig. 1a is transformed to a circle described by
a constant radial coordinateξ = 1 (Fig. 1b). The domainV is specified by 0≤ ξ ≤ 1. When
the origin of a polar coordinate system (ˆr, θ ) coincides with the scaling centre (Fig. 1b)

r̂(ξ ,η) = ξ r(η) = ξ
√

x2(η)+ y2(η); θ (η) = arctan(y(η)/x(η)) (2)
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Figure 1: Scaled boundary coordinates: (a) scaling centreO, radial coordinateξ and bound-
ary discretization; (b) transformed domain; (c) representation of bi-material wedge.

applies. Multi-material wedges, as shown in Fig. 1c with a bi-material wedge as an exam-
ple, are conveniently defined by constant values of the scaled boundary coordinates when
the scaling centreO is chosen at the vertex. The two straight edges passing through the scal-
ing centre are defined by constant circumferential coordinatesη and are not discretized.
Along the radial lines passing through the scaling centreO and a node on the boundary
(Fig. 1) the nodal displacement functions{u(ξ )} are introduced. The displacements at a
point (ξ , η) are interpolated from the nodal functions

{u(ξ ,η)} = [Nu(η)]{u(ξ )} = [N1(η)[I], N2(η)[I], . . .]{u(ξ )} (3)

The strains are expressed in the scaled boundary coordinates as (the argumentη in [B1(η)]
and[B2(η)] is omitted for simplicity)

{ε(ξ ,η)} = [B1]{u(ξ )},ξ +
1
ξ

[B2]{u(ξ )} (4)

[B1] =
1
|J|





y,η 0
0 −x,η

−x,η y,η



 [Nu]; [B2] =
1
|J|





−y 0
0 x
x −y



 [Nu],η ; |J| = xy,η −yx,η (5)

The element coefficient matrices are written as

[E0] =
∫ +1

−1
[B1]T [D][B1]|J|dη ; [E1] =

∫ +1

−1
[B2]T [D][B1]|J|dη ;

[E2] =

∫ +1

−1
[B2]T [D][B2]|J|dη

(6)

where the elasticity matrix[D] can be that of any general anisotropic material. The coef-
ficient matrices on the total boundary are obtained by assembling the element coefficient
matrices in the same way as in the finite element method (The same symbols are used for
simplicity). The scaled boundary finite-element equation in displacement is written as

[E0]ξ 2{u(ξ )},ξ ξ +([E0]− [E1]+ [E1]T )ξ{u(ξ )},ξ −[E2]{u(ξ )} = 0 (7)

Decomposing the Hamiltonian matrix formed by the coefficient matrices

[Z] =

[

[E0]−1[E1]T −[E0]−1

−[E2]+ [E1][E0]−1[E1]T −[E1][E0]−1

]

(8)
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into a block-diagonal real Schur form using the transformation matrix[Ψ] leads to

[Ψ]−1[Z][Ψ] = [S] = diag

(

diag([Snii]),

[

0 [I]
0 0

]

, diag([Spii])

)

(9)

The diagonal blocks of the matrix[S] are arranged to have all the diagonal entries of[Sn]
and [Sp] being negative and positive, respectively. In addition, the eigenvalues of all the
square diagonal blocks[Snii] and[Spii] are disjoint.[Ψ] is partitioned conformably to[S] as

[Ψ] =

[

[Ψu1] [Ψu2] [Ψu3] [Ψu4]
[Ψq1] 0 [Ψq3] [Ψq4]

]

(10)

The solution for a multi-material wedge with 0≤ ξ ≤ 1 (Fig. 1c) is expressed as

{u(ξ )}= [Ψu1]ξ−[Sn]{c1}+[Ψu2]{c2} (11)

The integration constants{c1} and{c2} are determined from the displacements on the
boundary{u(ξ = 1)}. The stresses are written as (omitting the subscript 1 in{c1})

{σ(ξ ,η)} = [Ψσ (η)]ξ−1ξ−[Sn]{c} = ∑
i
[Ψσ i(η)]ξ−1ξ−[Snii]{ci} (12)

with [Ψσ (η)] = [D]
(

−[B1(η)][Ψu1][Sn]+ [B2(η)][Ψu1]
)

(13)

In the radial direction, the stress field is described analytically by the matrix power function
of dimensionless radial coordinateξ . In the circumferential direction, it is approximated by
piecewise smooth functions[Ψσ (η)] of the local coordinateη . [Ψσ (η)] can be evaluated
at given values ofη , or angleθ (Eq. (2)), by using the standard finite element techniques.

Singular Stress Fields

The stress solution (Eq. (12)) is in the form of an asymptoticexpansion, whose coef-
ficients can be determined by matching it with Eq. (12) term-by-term atξ = 1. The stress
term is singular when the real part of an eigenvalueλi of [Sn] satisfies 0> λiR > −1. The
stress term in Eq. (12) for a real eigenvalue with an independent eigenvector is written as

{σi(ξ ,η)} = ciξ−λi−1{Ψσ i(η)} (14)

For a pair of complex conjugate denoted asλi = λiR + iλiI , λ̄i = λiR− iλiI, the stress is

{σi(ξ ,η)} = ξ−λiR−1[Ψσ i(η)]

[

cos(λiI lnξ ) −sin(λiI lnξ )
sin(λiI lnξ ) cos(λiI lnξ )

]

{ci} (15)

as in the asymptotic expansions for cracks on bi-material interfaces [3]. The stress-intensity
factor is determined by the singular stresses{σ (s)} calculated at (ξ = 1, η(θ = 0))

{

KI

KII

}

=
√

2πl f
λsR+1





cos
(

−λiI ln
l f
L

)

sin
(

−λiI ln
l f
L

)

−sin
(

−λiI ln
l f
L

)

cos
(

−λiI ln
l f
L

)





{

σ (s)
yy

σ (s)
xy

}

(16)
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wherel f is the distance from the crack tip to the boundary in its front(Fig. 1c). L is a
characteristic length. When two eigenvalues correspond toone independent eigenvector,
the diagonal block and the stresses are formulated as (a 6= 0 is a real number)

[Snii] =

[

λi a
0 λi

]

; {σi(ξ ,η)} = ξ−λi−1[Ψσ i]

[

1 −a lnξ
0 1

]

{ci} (17)

A logarithmic function appears in the stress solution.

Numerical Examples

An edge-cracked rectangular plate in plane strain is shown in Fig. 2. The crack length
is a = b/4 The material is isotropic with the Young’s modulusE and Poisson’s ratioν =
0.25. The boundary of the plate is discretized with 4-node elements. The initial mesh of
10 elements is shown in Fig. 2. The coefficients of the first 5 termsa1

i , i = 1,2, . . . ,5 of the
asymptotic expansion [4] are calculated and shown in Table 1. They converge as the mesh
is refined and are in good agreement with the results in Refs. [4,5].
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Figure 2: Edge-cracked
rectangular plate.

Figure 3: Central-cracked bi-material plate: (a) geometry;
(b) singular stress term on boundary.

A central-cracked bi-material plate with the crack lengtha/b = 0.5 in plane strain is
examined. Due to symmetry, only half of the plate is discretized with 18 4-node elements
(Fig. 3a). The stress-intensity factors andT -stress obtained for the ratios of Young’s moduli
E1/E2 = 1,5 and 10 and contant Poisson’s ratioν1 = ν2 = 0.3. The characteristic length
L = 2a (Eq. (16)) is chosen. The stress-intensity factorsKI , KII andK0 = (K2

I + K2
II)

1/2

are normalized byp
√

πa and shown in Table 2. TheT -stress is evaluated at the side of
Material 1 (atθ = 0+) and compared with the results in Ref. [6]. The exact solution for
the distribution of the singular stress term [6] on the boundary of the plate is calculated
for E1/E2 = 10 with the values ofKI andKII given in Table 2. It is plotted in Fig. 3b as
continuous lines. Discrete values at Gauss points obtainedusing the scaled boundary finite-
element method are plotted in the same figure. The two sets of results are indistinguishable.

A crack along the interface of two anisotropic half-planes in plane strain condition is
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Table 1: Coefficientsa1
i of the asymptotic expansion for edge-cracked rectangle plate.

Number of Elements Ref. [5] Ref. [4]
10 20 30

a1
1/(p

√
a) 1.05615 1.05955 1.05959 1.0597 1.0585

a1
2/p −0.14952 −0.15058 −0.15059 −0.1503 −0.1513

a1
3/(p/

√
a) 0.08021 0.07945 0.07944 0.082 0.0815

a1
4/(p/a) −0.04821 −0.04760 −0.04761 −0.04856 −0.0478

a1
5(p/ 3

√
a) 0.00595 0.00559 0.00562 0.0055

Table 2: Stress intensity factors andT -stress of central-cracked bi-material plate.
E1/E2 KI/(p

√
πa) KII/(p

√
πa) K0/(p

√
πa) T

√
πa/K0 T

√
πa/K0 ([6])

1 1.189 0.000 1.189 −1.060 −1.07
5 1.148 −0.104 1.153 −0.379 −0.39
10 1.123 −0.123 1.130 −0.216 −0.23

shown in Fig. 4. A forceP is applied perpendicularly on the upper crack face at a distance
a from the crack tip. The material properties are:E11 = 0.09852,E22 = 0.58140,G12 =
0.07813,ν12 = 0.0857 for material 1 andE11 = 0.06452,E22 = 1.70358,G12 = 0.08696,
ν12 = 0.02129 for material 2 [7]. A circular boundary, discretized with 12 cubic elements,
of radiusa with its centre at the crack tip (Fig. 4a) is introduced. The exact order of
stress singularity 1+ λ = 0.5+ i0.012 is obtained. The angular distribution of stresses at
r̂ = 0.01a is very close to the that of the analytical solution [7] as shown in Fig. 4b.

An isotropic bi-material wedge in plane strain with Young’smoduli E1/E2 = 10 and
Poisson’s ratiosν1 = ν2 = 0.2 is shown in Fig. 5. At the opening angleθ1 = θ2 = 138.7719◦,
a logarithmic term occurs in the solution with the order of singularityλ +1= 0.3214741102
(Ref. [8]). The boundary of the plate is discretized with 18 cubic elements. The diagonal
block in [Sn] (Eq. (9)) leading to stress singularities is denoted as[s]. Its diagonal terms
s11 = −0.67879 ands22 = −0.67826, are close to the exact eigenvalue ofλ = −0.67853.
The off-diagonal terms12 = 0.33465 is three orders of magnitude larger than the difference
betweens11 ands22. The normalized stress componentsσyy/p andσxy/p are multiplied
with (r̂/b)λ+1 = (r̂/b)0.32147and plotted versus log(r̂/b) in Fig. 5b. A finite element analy-
sis is performed using 10758 4-node quadrilateral elementswith 10861 nodes to verify the
results. Within a distance ˆr = 0.01b from the notch tip, the curves become inclined straight
lines. This demonstrates that the strongest singularity around the notch tip is ˆr0.32147logr̂.
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Figure 4: Interface crack in anisotropic bi-material full-plane: (a) geometry; (b) angular
distribution of stresses at ˆr = 0.01a.
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Figure 5: Notched bi-material plate: (a) geometry; (b) stresses on material interface.
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