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Scaled Boundary Finite-Element Solutionsfor Singular Stress Fields
in Multi-Material Wedges

Chongmin Sony

Summary

The singular stress fields around the vertices of multi-neteredges with arbitrary
geometries and material combinations are analyzed by #iedsboundary finite-element
method. The complete singular stress fields including: raEsingularity; stress intensity
factors;T-stresses and higher-order terms in the asymptotic expagigiower-logarithmic
singularities and angular distributions of stresses, ataioed in a single method. The
singular functions are represented analytically and ateewaluated close to the singular
point in determining the stress intensity factors, leadnigigh accuracy and simplicity.

Introduction

The novel scaled boundary finite-element method [1, 2] idiagpo analyze the stress
fields in multi-material wedges. The boundary of a multi-ena wedge, excluding the
straight surfaces forming the vertex, is discretized wideents. In the circumferential
directions parallel to the boundary, where the responsessamoothly, the solution is dis-
cretized based on the standard finite element formulatiorihé radial direction passing
through the vertex, where the stress singularities oceugralytical solution is obtained
without anya priori assumptions. The semi-analytical solution of the comttess field
includes not only singular stress afestress terms but also higher-order terms. The tran-
sition between power and power-logarithmic singularitsegccurately represented.

Summary of The Scaled Boundary Finite-Element Method

A so-called scaling centr® is chosen in a zone from which the total boundary must
be visible (Fig. 1a). The bounda8iis discretized with line elements. The geometry of an
element is interpolated using the mapping functipw@y)] in the local coordinate and
the nodal coordinateis<}, {y}. The domairV is described by scaling the boundary with a
dimensionless radial coordinafepointing away from the scaling cent&(%o, Yo). £ =0
atO and& = 1 on the boundary is chosen. A poirt §) inside the domain is expressed as

X(&,n) =%+ &N Y(&,n) =Y+ &Ny} 1)

&, n are called thescaled boundary coordinates in two dimensions. They resemble the
polar coordinates 4nd6. The boundargin Fig. 1a is transformed to a circle described by
a constant radial coordinafe= 1 (Fig. 1b). The domai¥ is specified by &< & < 1. When
the origin of a polar coordinate system @) coincides with the scaling centre (Fig. 1b)

F(&,n)=2¢&r(n)=¢&\/*2(n)+y?(n);  6(n)=arctarty(n)/x(n)) (2)
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Figure 1: Scaled boundary coordinates: (a) scaling céytradial coordinaté and bound-
ary discretization; (b) transformed domain; (c) repreatom of bi-material wedge.

applies. Multi-material wedges, as shown in Fig. 1c with-anaiterial wedge as an exam-
ple, are conveniently defined by constant values of the ddaendary coordinates when
the scaling centr® is chosen at the vertex. The two straight edges passingghitbe scal-
ing centre are defined by constant circumferential cootd8ra and are not discretized.
Along the radial lines passing through the scaling cefitrend a node on the boundary
(Fig. 1) the nodal displacement functiofig(&)} are introduced. The displacements at a
point (¢, n) are interpolated from the nodal functions

{u(&,m} = [N"(m)Ku(§)} = No(m)[1], N2(m)[1], . {u()} 3)

The strains are expressed in the scaled boundary coorsiam{the argumentin [B1(n)]
and[B?(n)] is omitted for simplicity)

{8(8.m)} = [BYHU(E) ¢ + £ BHU(E)) (4)
1 yvrl 0 1 -y 0
[Bl] =717 0 7X7rl [Nu]! [Bz] =197 0 X [Nu]ﬂ]; |‘]| = vaf] _yX,r] (5)
|J| 7X7r] yaf] |J| X 7y
The element coefficient matrices are written as
1 +1
€% =/ BTID)BYldn:  (EY= [ [87ID)BYdjan; o
1 B 6

E% = [ D831

where the elasticity matri{D] can be that of any general anisotropic material. The coef-
ficient matrices on the total boundary are obtained by askegthe element coefficient
matrices in the same way as in the finite element method (Tine sgmbols are used for
simplicity). The scaled boundary finite-element equatiodisplacement is written as

[E°)E2{u(&) }ee +([E% — [EY] + [ENT)E{u(@) }.e —[E7{u(§)} =0 (7)
Decomposing the Hamiltonian matrix formed by the coeffitiaatrices

- [E%) HEYT —[E9 o

[ ] - _[EZ] 4 [El] [EO]fl[EllT _[El][EO]fl ( )
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into a block-diagonal real Schur form using the transforamatatrix [¥] leads to

0

(] 2]19] = [ — diag diagi(Su)). |3 . ciagisl) ) ©

The diagonal blocks of the matr{ are arranged to have all the diagonal entriefSgif
and[Sy] being negative and positive, respectively. In additior, ¢éigenvalues of all the
square diagonal blocKSyi] and[S;ii] are disjoint.[W] is partitioned conformably t{5] as

T W W Y
wi=| fod Ml ] 10)

The solution for a multi-material wedge with<0& < 1 (Fig. 1c) is expressed as

{u(®)} = [Wul& S} + [Weal{co) (11)

The integration constantg; } and {c,} are determined from the displacements on the
boundary{u(§ = 1)}. The stresses are written as (omitting the subscript{tif)

{o(&.n)} = Wo(n)E & Sl{c} = 3 [Wai(n))E e Sl {c) (12)

with — [Wo(n)] = [D] (~[B*(n)][Wudl[Sn] + [B2(m)][Wua)) (13)

In the radial direction, the stress field is described araily by the matrix power function

of dimensionless radial coordinae In the circumferential direction, it is approximated by
piecewise smooth function¥s(n)] of the local coordinatg. [Ws(n)] can be evaluated
at given values ofy, or anglef (Eq. (2)), by using the standard finite element techniques.

Singular Stress Fields

The stress solution (Eq. (12)) is in the form of an asymptetisansion, whose coef-
ficients can be determined by matching it with Eq. (12) tegrtdrm até = 1. The stress
term is singular when the real part of an eigenvaluef [S;] satisfies 0> Air > —1. The
stress term in Eq. (12) for a real eigenvalue with an indepeheigenvector is written as

{Gi(&,n)} =& M HWoi(n)} (14)
For a pair of complex conjugate denoted\as- Air +iAj, )T. = Ajr —iAjl, the stress is

(@) =& twa(m) [Sotng) e (e 15)

as in the asymptotic expansions for cracks on bi-materiatfimces [3]. The stress-intensity
factor is determined by the singular stresée$”} calculated at{ = 1,n(8 = 0))

{ K }:\/ﬁf/\swl[ COS(*)\ilmlff) Sin()\nlnltf)] {052} )

Kii —sin(—)\“ In '{) cos(—}\nln l{) Oxy
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wherels is the distance from the crack tip to the boundary in its fr@ig). 1c). L is a
characteristic length. When two eigenvalues correspormh&independent eigenvector,
the diagonal block and the stresses are formulated #4Xis a real number)

sal =[5 mli e —ehwal 5 7 ) an

A logarithmic function appears in the stress solution.

Numerical Examples

An edge-cracked rectangular plate in plane strain is shaviaig. 2. The crack length
is a=b/4 The material is isotropic with the Young’s modulisand Poisson’s ratio =
0.25. The boundary of the plate is discretized with 4-node elem The initial mesh of
10 elements is shown in Fig. 2. The coefficients of the firstﬁlw}, i=12,...,50fthe
asymptotic expansion [4] are calculated and shown in Tablhgy converge as the mesh
is refined and are in good agreement with the results in R&H]. [
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Figure 2. Edge-cracked Figure 3: Central-cracked bi-material plate: (a) geometry
rectangular plate. (b) singular stress term on boundary.

A central-cracked bi-material plate with the crack lengflh = 0.5 in plane strain is
examined. Due to symmetry, only half of the plate is diseestiwith 18 4-node elements
(Fig. 3a). The stress-intensity factors andtress obtained for the ratios of Young’s moduli
E;/E» = 1,5 and 10 and contant Poisson'’s raitp= v, = 0.3. The characteristic length
L = 2a (Eq. (16)) is chosen. The stress-intensity factérsky andKo = (K? + K3 )/?
are normalized by./ma and shown in Table 2. Th&-stress is evaluated at the side of
Material 1 (até = 0") and compared with the results in Ref. [6]. The exact sofufiy
the distribution of the singular stress term [6] on the bamgdf the plate is calculated
for E1/E, = 10 with the values oK, andK;, given in Table 2. It is plotted in Fig. 3b as
continuous lines. Discrete values at Gauss points obtaisiag the scaled boundary finite-
element method are plotted in the same figure. The two setsolts are indistinguishable.

A crack along the interface of two anisotropic half-planegliane strain condition is
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Table 1: Coefficients! of the asymptotic expansion for edge-cracked rectangte pla

Number of Elements Ref. [5] | Ref. [4]
10 20 30
al/(pva) 1.05615| 1.05955| 1.05959 1.0597| 1.0585
al/p —0.14952| —0.15058| —0.15059| -0.1503| —0.1513
ai/(p/v/a) 0.08021| 0.07945| 0.07944 0.082 | 0.0815
al/(p/a) —0.04821| —0.04760| —0.04761| —0.04856| —0.0478
ai(p/¥a) 0.00595| 0.00559| 0.00562 0.0055
Table 2: Stress intensity factors afestress of central-cracked bi-material plate.
Ei/Ex | Ki/(pvm@) | Ki/(pvTR) | Ko/(pvTma) | Ty/ma/Ko | T/ma/Ko ([6])
1 1.189 0.000 1.189 —1.060 -1.07
5 1.148 —0.104 1.153 —0.379 —0.39
10 1.123 -0.123 1.130 —0.216 -0.23

shown in Fig. 4. A forceP is applied perpendicularly on the upper crack face at amtista

a from the crack tip. The material properties akg; = 0.09852,E,, = 0.58140,G1, =
0.07813,v1, = 0.0857 for material 1 ané;1 = 0.06452,E,, = 1.70358,G1, = 0.08696,

V12 = 0.02129 for material 2 [7]. A circular boundary, discretizeithal 2 cubic elements,

of radiusa with its centre at the crack tip (Fig. 4a) is introduced. Thaat order of
stress singularity + A = 0.5+ i0.012 is obtained. The angular distribution of stresses at
f = 0.01ais very close to the that of the analytical solution [7] asvghdn Fig. 4b.

An isotropic bi-material wedge in plane strain with Youngieduli E; /E; = 10 and
Poisson’s ratiog; = vo = 0.2 is shown in Fig. 5. Atthe openingandle= 6, =1387719,
a logarithmic term occurs in the solution with the order afgilarityA +1=0.3214741102
(Ref. [8]). The boundary of the plate is discretized with 1®ic elements. The diagonal
block in [S,] (Eq. (9)) leading to stress singularities is denotedshslts diagonal terms
s11 = —0.67879 ands, = —0.67826, are close to the exact eigenvalué e —0.67853.
The off-diagonal terng;» = 0.33465 is three orders of magnitude larger than the diffexenc
betweens;; andsy;. The normalized stress components/p and gy, /p are multiplied
with (f/b)*+1 = (f /b)®32147and plotted versus Idf/b) in Fig. 5b. A finite element analy-
sis is performed using 10758 4-node quadrilateral elemeititis10861 nodes to verify the
results. Within a distanae= 0.01b from the notch tip, the curves become inclined straight
lines. This demonstrates that the strongest singularityrad the notch tip is%32147|ogf.
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Figure 4: Interface crack in anisotropic bi-material fplane: (a) geometry; (b) angular
distribution of stresses at= 0.01a.
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Figure 5: Notched bi-material plate: (a) geometry; (b)sgtes on material interface.
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