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Summary 

 
A multiscale model is proposed herein for predicting the response of viscoelastic solids 

that undergo evolutionary cracking on multiple length scales.  The model is formulated in such a 
way that analytic solutions may be utilized on some scales, and computational solutions may be 
utilized on others.  The governing field equations may be rigorously derived on each length scale, 
and homogenization principles may be used to link the results obtained on each length scale.  The 
implementation of the model to a hybrid analytical/computational algorithm is briefly described, 
with the finite element method employed on the largest two length scales.  Finally, an example 
problem is solved in order to demonstrate both the accuracy and applicability of the model to a 
variety of current problems of engineering interest. 
  

Introduction 
 

A variety of viscoelastic solids undergo evolutionary cracking on multiple length scales. 
These cracks can interact and coalesce, sometimes leading to component failure.  Applications 
where this can occur include geologic salt, nuclear weapons detonator materials, solid rocket 
propellant, tank armor, and asphaltic pavement.  Currently utilized models for predicting the 
response of such media typically utilize a continuum damage mechanics model that accounts for 
the small scale damage in a phenomenological way at the macroscale. This approach, while it is 
indeed sometimes accurate, has some shortcomings.  Among these are the necessity to perform 
cumbersome and costly experiments in order to characterize the macroscale constitutive behavior 
of the material, as well as the loss of the ability to account for the effects of the microscale 
variables, so that design considerations cannot account for such important effects as volume 
fractions of microscale additives.  Multiscale models that are capable of predicting the response 
of viscoelastic media to both long term and impact loadings can potentially resolve both of these 
problems, thereby improving design procedures and decreasing costs simultaneously, while at the 
same time enhancing reliability.  

In this paper a multiscale model will be outlined for predicting the response of such 
media to a variety of loading conditions.  The model is formulated in such a way that analytic 
solutions may be utilized on some scales, and computational procedures may be utilized on 
others.  The evolution of cracks on multiple scales is accounted for via the incorporation of a new 
nonlinear viscoelastic micromechanically based cohesive zone model. The implementation of the 
model to a hybrid analytical/computational algorithm is briefly described, with the finite element 
method employed on the largest two length scales.  The following section outlines the model 
development. 
 

Multiscale Model Development 
 

Consider a solid region that may be heterogeneous, and has microstructure due to 
separate phases, grain boundaries, internal flaws, and/or damage.  It is assumed that the length  
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scale associated with the microstructure is significantly smaller than the length scale of the 
macroscale; that is, 
 

1 1,...,l l nµ µ µ+<< =       (1) 
 
where l  is the characteristic length for the particular scale of interest, the superscript refers to the 
scale number, and n represents the number of length scales observed in the problem of interest.  
While we will concentrate on only two scales in the present scenario, it is not uncommon to 
observe several length scales in practical problems.  Indeed, this approach will be applicable to 
any number n so long as the object of interest may be accurately modeled as a continuum on each 
length scale.   
 Consider now a two scale example, as shown in Fig. 1, where the smaller scale is defined 
by a representative volume element (RVE) whose dimensions must be small 
compared to the global scale, but large enough to ensure statistical homogeneity of the state 
variables within the RVE.  Mathematically, this implies that within the RVE 
 

 ( )SD
µ µθ θ<<        (2) 

 
where µθ  is a generic state variable (such as stress, strain, and displacement) at the smaller 
length scale,  
 

 
1

V

dV
V µ

µ

µθ θ≡ ∫        (3) 

 
is the volume average of the generic state variable in the RVE, and SD{.} is the standard 
deviation of the generic state variable, given by 
 

 { } ( )
1 2

21

V

SD dV
V µ

µ µ µ
µθ θ θ

 
≡ − 
 

∫      (4) 

 
The implication of inequality (2) above is that for purposes of modeling the response of the 
medium at the macroscale, the volume average of the generic state variable carries sufficient 
information about the state within the RVE, so that the full field of this variable is not required at 
the next larger scale.  Thus, localization for example cannot be accurately captured by the use of 
the mean values indicated above.  

Our intention is to solve two separate initial boundary value problems for these two 
scales, as opposed to a single one for both simultaneously.  These two separate solutions are to be 
linked via a homogenization principle, and the intended objective is to gain computational and/or 
analytic simplicity without sacrificing significant accuracy.  The reasons that this approach has 
potential are as follows [Allen, 2002]: 
 

1) solving the complete problem will normally be untenable when numerous cracks of 
widely varying dimensions are present since large numbers of finite elements are 
necessary for each individual crack;  
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2) the mean values of the state variables at the smaller scale may have a profound impact on 
the accuracy of the model predictions at the next larger scale; and 

3) the construction of a linked multiscale model produces a superior model to a single global 
model in that the details that are accounted for at the smaller length scales can be 
incorporated as design parameters affecting the performance at the global scale. 

 
The two stage solution approach is initiated by first posing the initial boundary value 

problem for each representative volume element on the local scale.  This local problem is then 
solved by any means at hand, i.e., analytically if such a solution exists, or numerically (such as 
the finite element method) if an analytic solution does not exist.   
 Assuming that the solution to the local problem has been obtained for each representative 
volume element in the global scale problem, the next step is to link the local scale to the global 
scale.  This is accomplished by defining boundary averages of the state variables at the local 
scale.  Thus, the boundary averaged displacements are defined by 
 

 
1ˆi i

V

u u dS
V µ

µ µ
µ

∂

≡ ∫        (5) 

 
 
where iuµ  is the displacement vector on the smaller scale, and V µ  is the volume of a 
representative volume element (RVE), defined by inequality (2).  Furthermore, the boundary 
averaged stresses are defined as 
 

 
1ˆ

E

ij ik k j
V

n x dS
V µ

µ µ µ µ
µσ σ

∂

≡ ∫       (6) 

 
where nµr  is the unit outer normal vector to the external undamaged boundary EV µ∂ of the RVE, 

and ik
µσ  is the stress tensor on the smaller scale.  Finally, the boundary averaged strain is defined 

by  
 

 
1 1ˆ ( )

2
E

ij i j j i
V

u n u n dS
V µ

µ µ µ µ µ
µε

∂

≡ +∫      (7) 

 
By adding the internal boundary term to equation (6) and employing the divergence theorem and 
Cauchy’s formula, it can be shown that in the absence of inertial effects and body forces (by 
deploying conservation of linear momentum): 
 
 ˆˆij ij ij

µ µ µσ σ ς= +         (8) 
where 
 

 
1ˆ

I

ij i
V

t dS
V µ

µ µ
µς

∂

≡ ∫        (9) 

 
is the boundary average of the tractions, it

µ , on the crack faces and/or internal boundaries IV µ∂ .  
In the case wherein the internal boundaries are all produced by crack extension, it can reasonably 
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be assumed that the crack face tractions are self equilibrating, so that ˆ 0ij
µς = , with the necessary 

conclusion that 
 
 ˆij ij

µ µσ σ=         (10) 
 
In other words, when there are only internal cracks, the external boundary averaged stress is 
equivalent to the volume averaged stress in the RVE. 

We assume herein that the difference in length scales is great enough that inertial effects 
and body forces can always be neglected at all scales except the global scale, so that equation (10) 
is true for all values of lnµ < , where ln  is the number of scales considered in the solution 
scheme.   A similar procedure will result in the following kinematic equations: 

 
ˆ ˆij ij ij

µ µ µε ε α= +         (11) 
 
where [Eshelby, 1957] 
 

 
1 1ˆ ( )
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≡ +∫      (12) 

 
 
 
as we noted earlier, it is in general too computationally cumbersome to utilize the full- field 
stresses on the larger scale from the next smaller length scale, ij

µσ , in the above.  Our preference 
would be to obtain an approximate yet reasonably accurate simplification of the global problem 
that does not require full field values at the smaller scale, but rather employs a simpler measure 
such as the mean value of the stress from the smaller scale.  Such a statement may be derived 
from the exact equations by integrating them over the volume of the RVE, and then employing 
the divergence theorem, together with the above boundary averaged variables, to produce a global 
initial value problem that is identical to the local boundary value problem solved for each local 
RVE, with one exception.  That exception is that the global constitutive equations will be 
complicated by the fact that an additional damage dependent term appears.  Thus, for example, 
for the case of linear viscoelastic material behavior at the microscale, the resulting constitutive 
equations at the macroscale will take on the following form [Searcy, 2004]: 
 

 1 1

0

( ) ( ) ( )
t

Dkl
ij ijkl ijt C t d

µ
µ µ µεσ τ τ σ

τ
+ +∂

= − +
∂∫      (13) 

 
where ( )ijklC tµ  is the linear viscoelastic relaxation modulus tensor on the smaller scale, and kl

µε  is 
the strain tensor on the smaller scale.  Also, 
 
  
      (14) 
 
 
Thus, with the exception of the last term in equation (13), the form of the global initial boundary 
value problem is identical to the local one.  Most importantly, this last term can be calculated 

( ) ( )
1
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∫ ∫
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from the local solution for each RVE at each increment in time, so that equation (14) is known at 
each point in the global problem, and the global problem can then be solved with essentially the 
same algorithm that is utilized to solve the local one.  Note that all damage in the global solution 
thus enters through the boundary integral reflected in equation (14).  Thus, the technique for 
constructing a multiscale algorithm is well defined and the conditions under which it will be 
produce accurate predictions are established by the condition (2) above for all length scales of 
interest.   
 

Development of a Multiscale Algorithm 
 

The methodology described in the previous section has been successfully implemented to 
the finite element program SADISTIC [Allen et al., 1994, Searcy, 2004].  This algorithm can be 
used to model the evolution of cracks in viscoelastic media by utilizing a micromechanically 
based cohesive zone model previously developed by the authors [Allen and Searcy, 2001a, b].  
This cohesive zone model can be deployed on any and all length scales for which crack evolution 
is expected to occur.  The evolution of such cracking on any scale will naturally lead to the 
development of non-null values of 1D

ij
µσ +  wherever cracking occurs within an RVE, and this term 

will then modify to the macroscale response of the medium.  This procedure has been utilized to 
develop the multiscale version of SADISTIC deployed herein. 
 

Sample Problem 
 

The multiscale method briefly described in the previous two sections can be employed to 
predict the response of viscoelastic media that undergo multiscale cracking.  As an example, we 
consider herein the case of a tapered uniaxial bar composed of a composite material with 
microstructure, as shown in Fig. 2.  The bar is subject to uniaxial monotonically increasing 
loading, thus producing crack growth near the narrow end of the bar.  The type of response shown 
in Fig. 3 is at least in qualitative agreement with experimental evidence. 
  

Conclusion 
 

A model has been briefly reviewed herein for predicting the evolution of cracks on 
multiple scales in heterogeneous viscoelastic media.  An example problem has demonstrated the 
potential viability of this approach.  However, more study is warranted before this model can be 
verified. 
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Fig. 1.  Representation of a Continuum with Two Length Scales Due to Damage Accumulation 
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Fig. 2.  Tapered Bar Geometries. (a) Global Geometry (b) Unit Cell. 
 

 
Fig.3. Axial Stress Distribution for Tapered Bar Problem (a) Without Multiscaling  

and (b) With Multiscaling. 
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