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Summary 

A phenomenologically-founded material model for unbound materials is presented in 
the present paper. This model, which takes account of elastic and plastic deformation 
rates, is calibrated on the basis of laboratory tests [1], [2] and, analogous to a material 
model for asphalt [3], is implemented in a numerical model [4]. The model is verified on 
the basis of a reference computation. The paper also considers the treatment of large load 
alternation numbers in the numerical analysis process. 

Introduction 

A realistic description of the load-bearing behaviour of pavements requires an 
appropriate geometrical and structural model of the layered construction as well as the 
foundation soil. Various numerical computational methods are available for this purpose. 
For example, the boundary element method may be effectively applied for modelling the 
load-bearing behaviour of the foundation soil. The method of finite elements offers a 
suitable means of accounting for the load-bearing action of pavement construction layers 
in the numerical analysis process. Besides the most exact description possible of the 
mechanics of layered pavement constructions it is also necessary to realistically model 
the behaviour of the construction materials used (asphalt and unbound materials). 

Phenomenological and Mathematical Description of the Material Behaviour of 
Unbound Materials 

Unbound materials exhibit nonlinear elastic and plastic deformation properties; 
initially they do not possess a "purely elastic" potential, i.e. reversible and irreversible 
deformation contributions always develop independent of the magnitude of the load. 
Temporal changes in  material properties, as e.g. in the case of asphalt, do not occur. Due 
to the absence of bonding forces between individual grains this material is only capable 
of transferring compressive forces. An increase in compressive forces leads to an increase 
in the contact surfaces between neighbouring grains. This results in an increase in stiff-
ness, i.e. with a linear increase in stress the elastic deformations increase degreessively. 
Material behaviour is not only influenced by the effects of stress but is also dependent on 
moisture content, in situ density, grain shape, grain diameter, and the composition and 
type of material.  For the purpose of computing the  elastic deformation contributions εel 
relationships between the elasticity modulus E [kN/m²] as well as Poisson's ratio µ and the 
rotationally symmetric principal stresses (σz  [kN/m²], σr [kN/m²]) are given in [2]. The 
parameters of Eqs. (1a; b) for a granodiorite (4% moisture content) are listed in Table 1. 
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Q  =  5,386.1 Q1  =  0.593 D  = 20.000 A  = -0.0024 
C  =  2,315.6 Q2  =  0.333 R  =   0.017 B  =  0.3520 
 
Table 1   Parameters for elastic deformations 

The accumulated plastic deformations εz
Σpl for an unbound material specimen are 

shown qualitatively in Fig. 1. For the purpose of describing the plastic deformation 
behaviour mathematically it is appropriate to subdivide the load regime into three regions 
(A, B and C). Small stresses are assigned to region A. In region A the increase in plastic 
deformations tails off with increasing load alternation number (consolidation). With an 
increase in the load alternation number at constant stress, plastic deformations no longer 
increase or only increase to a minor degree in region A. The material then exhibits purely 
elastic behaviour. Following initial consolidation a plastic deformation increase pro-
portional to the load alternation number becomes established in region B. For large load 
alternation numbers so-called polishing effects lead to a progressive increase in plastic 
deformations. This is due to a reduction in the surface roughness of individual grains, 
which means that that lower intergranular shear stresses may be transferred from the 
grain matrix. Large stresses are assigned to region C, in which a progressive deformation 
increase occurs following consolidation (even for small load alternation numbers). With 
regard to the serviceability and durability of pavements the occurrence of progressive 
deformation increase must be eliminated by appropriate constructional measures. 
 

 
 

Fig. 1   Asphalt specimen and accumulated plastic deformations in regions A and B 

Functional relationships between the accumulated plastic deformations (εz
Σpl [‰]) 

and the rotationally symmetric principal stresses (σz  [kN/m²], σr [kN/m²]) for the loading 
regions A and B are given in [1]. 

( )pl 3LW 10Σ −ε = ⋅ ⋅
B

A               (2)   
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The following holds for region A:        The following holds for region B: 

2A r 4Aa a2
1A z 3A r za e a⋅σ= ⋅ ⋅σ + ⋅σ ⋅σA  ( ) ( )2B 4B

2a a
1B r z r 3B r z ra a= ⋅σ ⋅ σ σ + ⋅σ ⋅ σ σA   

2A r 4Ab b
1A z 3A rb e b⋅σ= ⋅ ⋅σ + ⋅σB  ( )2B 4Ba b

1B r z r 3B rb b= ⋅σ ⋅ σ σ + ⋅σB  

 
The parameters a1A to b4B for a granodiorite (4% moisture content) are listed in Table 2. 

A criterion for the assignment of stresses occurring in regions A and B is given by Eq. 
(3). The condition pertaining to region A is that σz ≤ σzlim, and for region B, that σz >σzlim. 

 
a1A =  0.00001 a2A = -0.00970 a3A =  0.00001 a4A =  0.41340 
b1A =  0.00090 b2A = -0.01070 b3A =  0.00670 b4A =  0.55790 
a1B =  0.00020 a2B =  1.45140 a3B = -0.00040 a4B =  1.44070 
b1B =  0.01020 b2B =  0.19950 b3B =  0.00400 b4B =  0.68440 

Table 2   Parameters for accumulated plastic deformations 

Three-dimensional Differential Formulation of the Material Model 

In the three-dimensional formulation of the material model it is assumed that the stress 
rates σ� a (a = 1, …, 6) are dependent on the initial stresses σ b and the deformation rates 
ε� b, (b = 1, …, 6); a b bF( , )σ = σ ε�� . Moreover, it is postulated [1] that plastic deformations 
result from relative displacements between neighbouring grains and are only initiated by 
the deviatoric part of the stresses σa

dev. Elastic deformations are caused by the hydrostatic 
and deviatoric stress contributions σa

hyd + σa
dev . 

( )el,hydhyd dev el el el,dev
a a a ab b bC fσ = σ + σ = ⋅ ⋅ ε + ε� �� � �             (3) 

Cab
el is the elasticity matrix. If the increase in plastic deformations is only due to the 

deviatoric part of the stresses, it follows that the hydrostatic (volume-changing) 
contribution to plastic deformations is zero. 

el,hyd pl,dev pl,hydel,dev
b b b b bund 0ε = ε + ε + ε ε =� � � � �              (4) 

In order to compute plastic deformation rates the yield law of v.MISES is applied. The 
yield law permits the computation of three-dimensional deformation rates from one-
dimensional reference plastic strain rates ε� pl . 

( )pl,dev pldev pl dev dev dev
b b b b 2 bb ( ) f mit ( ) 3 2 Iε = σ ⋅ ε ⋅ σ = ⋅ ⋅σF F� �           (5) 

I2
dev is the second invariant of the stress deviator. The required relationship 

a b bF( , )σ = σ ε��  between stress rates and stresses as well as deformation rates is given by 
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Eqs. (3), (4) and (5). Eqs. (4) and (5) are substituted into Eq. (3) and subdivided into two 
summands. 

R I
a a aσ = σ + σ� � � ;    R el el

a ab bC fσ = ⋅ε ⋅�� ;     plI el dev el pl
a ab b bC ( ) f fσ = − ⋅ σ ⋅ ε ⋅ ⋅F ��        (6a; 6b; 6c) 

Postulates regarding elasto-plastic material models  
 
The requirements necessary to compute the stress rates a b bF( , )σ = σ ε��  are material 

objectivity, first order homogeneity regarding deformation rates, nth order homogeneity 
regarding stresses, and irreversibility. Moreover, the dissipation condition must also be 
fulfilled. Material objectivity is ensured by implementing invariant variables in the set of 
Eqs. (6). The one-dimensional reference plastic strain rate ε� pl  in Eq. (6c) may be 
computed with the aid of Eq. (2). Eq. (2) is (test-related) dependent on the rotationally -
symmetric principal stress components σz and σr. In order to approximately compute σz 
and σr from the three-dimensional stress state and fulfil the material objectivity 
requirement, invariant variables of the rotationally symmetric principal stress state and 
the three-dimensional stress state (I1 and I2

dev) are determined and equated.  

z r 12 Iσ + ⋅σ =− ;   ( )2 dev
z r 2

1
I

3
σ −σ =    →  

dev
1 2

z

I 2 3 I

3

− + ⋅ ⋅
σ = ;  

dev
1 2

r

I 3 I

3

− − ⋅
σ =     (7a-d) 

I1 is the first stress invariant. The requirement of first order homogeneity with respect 
to deformation rates means that stress rates and deformation rates must be linearly 
proportional; a b b a b b( , ) ( , )σ σ λ⋅ε = λ ⋅σ σ ε� �� � . In the case of nth order homogeneity with 
respect to stresses it is required that stresses and stress rates are related by nth order 

proportionality; n
a b b a b b( , ) ( , )σ λ⋅σ ε = λ ⋅σ σ ε� �� � . Both of these requirements were established 

by GUDEHUS [6] and are based on a wide variety of tests on unbound materials. 
Irreversibility implies that deformation reversal must not take place along the stress path 
established during deformation development; a b b a b b( , ) ( , )σ σ −ε ≠ −σ σ ε� �� � . In order to fulfil 
the irreversibility requirement the two functions fel and fpl are defined as follows: 

el 1 b 1 b 1 b

1 b 1 b 1 b

I ( ) I ( ) I ( )1 1
f 1 1 1

I ( ) 2 I ( ) I ( ) 4

     σ σ ε
= − ⋅ + + ⋅ − ⋅          σ σ ε     

�

�

;     pl 1 b

1 b

I ( ) 1
f 1

I ( ) 2

 ε
= − ⋅  ε 

�

�

   (8a; 8b) 

The first summand in Eq. (a) is always unity in the case of compressive stresses (σb < 
0) whereas the second summand is zero. Tensile stresses (σb > 0) cannot be sustained by 
unbound material. If a compressive stress state is fully depleted by positive deformation 
increases, the material yields for σb > 0 in the event that further positive deformation 
increases are effective. In this case both of the summands of Eq. (8a) are zero. If negative 
deformation increases become effective once the yield limit σb > 0 has been attained, the 
second summand of Eq. (8a) is unity, i.e. a repeated compressive stress state develops in 
the material. 
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Three-dimensional Incremental Formulation of the Material Model 
 
In order to solve the differential equations (6a) and (6b) the loading process is 

modelled incrementally. The system reactions w (stresses, deformations; w = σ, ε) within 
an increment are computed by interpolating between the initial and final values over the 
increment; w(ξ) = w[i+1]

·ξ + w[i]
·(1-ξ). At the beginning of the increment ξ = 0 whereas at 

the end of the increment ξ = 1, cf. [3]. The equality w( ) wξ = ∆�  applies for the derivatives 
of the system reactions. The differential equations (6a,b) are then: 

plR el el I el dev el pl
a ab b a ab b bC f ; C ( ) f f∆σ = ⋅∆ε ⋅ ∆σ = − ⋅ σ ⋅∆ε ⋅ ⋅F               (9a; 9b) 

Eq. (9) must be formulated as an eigenvalue problem and developed as a TAYLOR 
series with respect to the terms ∂∆σa and ∂∆εb. The solution is obtained iteratively by the 
NEWTON-RAPHSON method. A disadvantage of the method presented here is that each 
load alternation must be computed separately. The plastic deformation increase per load 
alternation is: 

( )( ) ( )pl 3 3LW 1 10 LW 10− −∆ε = ⋅ + ⋅ − ⋅ ⋅
B B

A A            (10) 

In order to reduce the amount of numerical computations the cyclic loading process 
may be subdivided into load alternation increments. Each load alternation increment is 
thereby comprised of ∆LW load alternations. The load alternation number during the 

incremental computation is [i]LW( ) LW LWξ = +∆ ⋅ξ.  LW[i] is the number of load alterna-
tions already applied at the beginning of the ith increment. The deformation rate is 
obtained by differentiating Eq. (2) with respect to ξ. 

( )
pl pl

pl 3 plLW LW
LW( ) 10

LW LW( )

Σ Σ
−∂ε ∂ε ∂ ∆ε = = ⋅ = ⋅ ⋅ ξ ⋅ ⋅ = ∆ε

∂ ∂ξ ξ∂ξ

B

A B�        (11) 

The method presented here accelerates the numerical analysis process and may be 
applied under the assumption that geometrical changes in the construction to be analysed 
are either negligibly small or are mainly caused by the accumulated plastic deformation 
contributions. 

Verification of the Material Model 

The material model for unbound materials was verified by large-scale laboratory tests 
[5]. The results presented in [5] are based on a series of tests on a 0/32 gravel-sand 
mixture. The plan area of the test rig is 2.5 x 2.5 x 0.9 m. A cyclic load of 5 Hz was 
applied; the maximum applied load was 14.1 kN. By taking advantage of symmetry it 
was only necessary to model one quarter of the test specimen. The implemented FE mesh 
is shown in Fig. 2. The mesh consists of 1,985 isoparametric displacement elements with 
28,515 displacement degrees of freedom. 

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

1240



 

 

 

 

 

 

 
 
Fig. 2    FE mesh and displacements after one million load alternations 
 
A comparison between the computed elastic and plastic vertical displacements 

FE(uel); FE(upl) and the measured displacements LV(uel); LV(upl) in the region of load 
application is presented in Table 3. The percentage differences AB are also given in the 
Table. 

 

LW FE(uel ) [mm] LV(uel ) [mm] AB FE(upl ) [mm] LV(upl ) [mm] AB 
5·105 -0.161 -0.160 0.6 -3.857 -3.750  2.9 
106 -0.161 -0.150 7.3 -5.250 -4.950  6.1 

Table 3   Elastic and plastic displacements in the region of load application 
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