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Summary

For the boundary value problems of homogeneous equations, we present a
method to approximate the boundary value functions by using the fundamental
solutions when the domain is a disc, which provides approximate solutions on the
entire domain by the stability of the solutions of boundary value problems. Exam-
ples are given to show that our methods apply to Laplace, biharmonic, Helmholtz
and modified Helmholtz equations.

1. Introduction

Consider the boundary value problem of a homogeneous equation in R2

v(x) = 0, x Ω, (1)

v (x) = b (x) , x ∂Ω, (2)

where is a differential operator, Ω is a simply connected domain in R2, and b is a
boundary value function. Under appropriate conditions we assume that the above
problem has a unique solution and it continuously depends on the boundary value
function b, namely if bn is a sequence of functions which converges to b in L

∞ (∂Ω)
and vn is the sequence of the corresponding solutions for

vn(x) = 0, x Ω, (3)

vn (x) = bn (x) , x ∂Ω, (4)

then vn converges to v in L
∞ (Ω) (cf. [1] for instance).

Denote by G (x,y) the fundamental solution of (1), that is

G (x,y) = δ (x y) , x,y R2, (5)

where δ is the Dirac delta function. To solve (1)-(2) by the methods of fundamental

solutions (MFS), we choose a fictitious domain Ω such that the closure Ω Ω, and

choose source points yk ∂Ω, 1 k m, and form a function

vm (x) =
m

k=1

ckG (x,yk) , (6)
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where ck, 1 k m, are constants. Then vm satisfies (1). For vm to satisfy (2)
as much as possible, collocation or least square methods are usually used (cf. [2]
and references therein). For instance, in the collocation methods, one chooses m
distinct points xj ∂Ω such that

vm (xj) = h (xj) , 1 j m, (7)

which is then used to determine the coefficients ck in (6) by solving the correspond-
ing linear system. However the convergent results are difficult to obtain by the
collocation methods. In [3,4], other approximation methods have been used to de-
rive the convergent rates of MFS for the boundary value problems of Poisson’s and
modified Helmholtz equations. In the following Section 2 we will present the meth-
ods of approximating boundary value functions by using fundamental functions,
and exmples will be explicitly shown in Section 3 to demonstrate that our methods
apply to Laplace, biharmonic, Helmholtz and modified Helmholtz equations.

2. Approximation of Boundary Value Functions by Fundamental
Solutions

For the sake of arguments, we identify R2 with a complex plane, and assume
that Ω and Ω are concentric disks with the center at the origin, namely:

Ω = reiθ; θ [0, 2π] , Ω = Reiθ; θ [0, 2π] (8)

with r < R. For a given fundamental solution G (x,y), let

g (t) = G reit, R , (9)

which is a 2π-periodic function of t. Expand g into its Fourier series

g (t) =
∞

n=−∞
cn (g) e

int, (10)

where cn (g) =
1
2π

2π

0
g (t) e−intdt for any integer n. The following simple lemma

is shown in [4].

Lemma 1. Suppose that g is a 2π-periodic function and cn (g) = 0 for any n Z.
Then for any fixed integer m, if m j m 1, there holds

eijt
1

2mcj (g)

m−1

k=−m
e
kjiπ
m g t

kπ

m

1

cj (g)
q 6=0

cj+2mq (g) . (11)
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Let g be given in (9) by a fundamental solution. For any h (t) = n∈Z cn (h) e
int

L∞ [ π,π], we define

m,kh(t) :=
m−1

`=−m
a` (h, k) g t

π`

m
, (12)

where k, m are integers, k < m 1, and

a` (h, k) :=
k

n=−k
cn (h)

e
`nπi
m

2mcn (g)
, m ` m 1. (13)

It then follows that

h m,kh ∞ h
k

n=−k
cn (h) e

int

∞
(14)

+
k

n=−k
cn (h) eint

m−1

`=−m

e
`nπi
m

2mcn (g)
g t

π`

m
∞
(15)

|n|≥k+1
cn (h) +

k

n=−k
cn (h)

q 6=0

cn+2mq (g)

cn (g)
, (16)

which we conclude in the following proposition.

Proposition 2. Suppose that g L2 [ π,π] satisfies cn (g) = 0 for any n Z.
Then for any h L∞ [ π,π], and any integers m, k, k < m 1, there holds

h m,kh ∞
|n|≥k+1

cn (h) +
k

n=−k
cn (h)

q 6=0

cn+2mq (g)

cn (g)
. (17)

To derive the convergent rates from the above proposition, the Fourier coeffi-
cients of h, g need to be estimated. If h is j times continuously differentiable, it is
easy to see

cn (h) c
h(j) ∞
n
j

, n = 0, (18)
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where c is a constant independent of h and for n = 0 we obviously have c0 (h)
c h(j) ∞. Hence the first term in the right-hand side of (17) can be estimated as
follows

∞

|n|≥k+1
cn (h) c

h(j) ∞
kj−1

, k = 0. (19)

To estimate the second term in the right-hand side of (17), the properties of funda-
mental solutions need to be used. It turns out that for many fundamental functions
cn (g) decays exponentially or in the order of (r/R)

n
, which guarantees the conver-

gence of the second term in the right-hand side of (17). A detailed discussion of
cn (g) for different fundamental functions will be given in the next section.

We now turn to the boundary value problem (1)-(2). Let h (t) = b reit ,
t [ π,π]. And set

vm,k(x) :=
m−1

`=−m
a` (h, k)G x, Rei

π`
m , (20)

then vm,k satisfies the equation (1), and on the boundary ∂Ω,

vm,k(re
it) =

m−1

`=−m
a` (h, k)G reit, Rei

π`
m (21)

=
m−1

`=−m
a` (h, k) g t

π`

m
(22)

= m,kh(t). (23)

Hence, if m,kh converges to h in L
∞ [ π,π]; that is, vm,k converges to the bound-

ary value function b on ∂Ω, by the assumption on the continuity of the solutions,
vm,k converges to the unique solution v of (1)-(2) on Ω.

3. Examples of Differential Equations

The fundamental solutions of Helmholtz and modified Helmholtz equations in-
volve different kinds of Bessel functions Ik, Jk, Kk, and even Hankel functions Hk.
The properties and identities of these special functions can be found in [5] .

Example 1. For the Laplace equation ∆u = 0, its fundamental solution is

G (x,y) =
1

2π
ln x y , (24)
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which we have

g (t) =
1

2π
ln reit R =

n

cn (g) e
int, (25)

with

cn (g) =
1
2π lnR, n = 0,
1

4π|n|
r
R

|n|
, n = 0.

(26)

It can be shown (cf. [4]) that for R = 1, the estimation in Proposition 2 becomes

h m,kh ∞ c h ∞
1

kj−1
+

r

R

2(m−k)
. (27)

Example 2. For a modified Helmholtz equation ∆u λ2u = 0, the fundamental
solution

G (x,y) =
1

2π
K0 (λ x y ) . (28)

The Fourier coefficients of the corresponding g are given by

cj (g) =
1

2π
Kj (λR) Ij (λr) = 0, j Z. (29)

A similar result to (27) has been shown in [3].

Example 3. Consider a Helmholtz equation ∆u+ λ2u = 0, whose fundamental
solution is

G (x,y) =
1

4i
H0 (λ x y ) , (30)

which the Fourier coefficients of the corresponding g are given by

cj (g) =
1

2π
Hj (λR)Jj (λr) , j Z. (31)
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Denote by δk the smallest positive zero of Jk, then it is known that

δ0(= 2.4048...) < δ1 < < δn < , (32)

and Jn (x) > 0 for x (0, δn). Hence if λr < δ0, then cn (g) = 0. Usine the
properties of Hankel and Bessel functions (cf. [5]), a similar result of (27) can be
derived.

Example 4. We now consider a biharmonic equation ∆2u = 0, which the fun-
damental solution is

G (x,y) =
1

8π
x y 2 ln x y , x,y R2. (33)

We have c−n (g) = cn (g) for any n, and

c0(g) = r2 +R2 lnR2 + 2r2, (34)

c1 (g) =
1

2

r3

R
rR rR lnR2, (35)

cn (g) =
r

R

n 1

n (n 1)

r

R

n+2 1

n (n+ 1)
, n 2. (36)

Hence cn (g) = 0 for any n Z. A similar result as in (27) certainly can be expected.
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