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Summary

In this work we have developed a numerical modeling of the continuity equations for
3D numerical simulation of abrupt heterojunction bipolar transistors (HBT). For this class
of transistors it is necessary to take into account that on both sides of the interface between
the different regions of HBT devices exist materials with different properties. It implies
the standard discretization methods, as FEM or finite differences, can not applied directly.
We have applied our modeling combined with the finite element method (FEM), making
a specific formulation for the nodes located on the interface of the regions with different
characteristics. This way, the effects due to thermionic emission and the tunnel effect may
be simulated when these equations are solved in an abrupt HBT.

Introduction

Heterojunction bipolar transistors (HBTs) are nowadays an active area of research due
to interest in their high–speed electronic circuit applications [1]. The main characteristic
of bipolar transistors with an abrupt heterojunction is a discontinuity in the energy bands
at the emitter–base interface [2]. Development of numerical models for HBTs is essential
for a better understanding of their physical behavior and to design optimization, and it is
currently an important research area. The first programs enabled one-dimensional simu-
lations to be carried out. Nevertheless, with the reduction of the physical dimensions of
the devices to be simulated, the need for carrying out 3D simulations in order to be able
to study the diverse factors that affect the devices in a more precise manner has become
evident.

Conventional simulators of homojunction and gradual heterojunction bipolar transis-
tors are based on drift–diffusion carrier transport. This model is not valid for abrupt HBTs,
since the current through the energy spike formed at the emitter–base interface is controlled
by thermionic emission and tunneling transmission [3][4]. Furthermore, HBTs have a very
highly doped base region in order to improve their high–frequency performance, and it is
therefore necessary to include the Fermi–Dirac statistics [5]. In this paper we propose a new
formulation for the electron and hole continuity equations at the heterojunction interface
to study these devices combined with finite element method. Commercial programms, like
Silvaco, Apsys, etc. do not use this aproximation. Using this model heterojunction bipolar
transistors may be simulated using several dimensions, included the thermionic emission
and the tunnel effect.

1Departamento de Electronica y Computacion, Univ. Santiago de Compostela, Campus Sur,
15782 Santiago de Compostela, Spain. e–mail: antonio@dec.usc.es

2Departament d’Enginyeria Electronica, Univ. Politecnica de Catalunya, Modulo C4, Campus
Nord, c/Jordi Girona,1–3, 08034 Barcelona, Spain. e–mail: jmlopezg@eel.upc.es
This work was partly supported by the Ministry of Science and Technology of Spain under the
projects MCYT-FEDER 2003-03272 and MCYT-FEDER 2001-3694-C02-01.

2029
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



Modeling and Simulation of Abrupt HBTs

For studying electrical behavior of an heterojunction bipolar transistor, the basic equa-
tions to be solved are Poisson and electron and hole continuity equations, in a stationary
state. In a previous work we have developed a model for Poisson equation [6]. The model
described here is a further generalization of that work to study continuity equations.

In all the regions of the device, except at the emitter–base interface, the carrier currents
are controlled by drift–diffusion mechanisms, and may be expressed by:

Jn ��qµnn∇�φn�� Jp ��qµpp∇�φp� (1)

where q is the electronic charge, n and p are the electron and hole densities, µ n and µp are
the mobilities of electrons and holes, and φn and φp the quasi–Fermi potentials.

The charge transport through an abrupt discontinuity is based on Grinberg’s model [4],
which includes tunneling transmission through the spike and thermionic emission over it.
The electron current density through the spike in the conduction band is expressed as:

Jn ��qνneff

�
NcB

NcE
n�z�j ��n�z�j �e

� ∆Ec
kT

�
(2)

where ∆Ec is the discontinuity in level Ec in the heterojunction interface, NcB and NcE are
the effective density of states in the conduction band in both regions, z�j and z�j are the two
sides of the emitter–base interface and vneff is the effective electron velocity through the
interface, which is expressed as:

νneff �

�
kT

2πm�
B
�1� pt� (3)

where pt is the tunneling factor through the spike and m�
B is the effective electron mass in

the region of base. Expressions similar to 2 and 3 apply for the holes current in the valence
band through the interface.

These equations are scaled using the scaling presented in [7]. Next, the finite element
method should be applied in order to discretise the scaled equations, thus obtaining a sys-
tem of nonlinear equations, using Scharfertter–Gummel schemes. This new formulation is
based on a previous 1D model developed using finite differences [2][3]. The finite–element
approach is more useful than the finite–difference method for obtaining solutions for non
rectangular, irregularly shaped device geometries, where its inherent flexibility can lead
to a more efficient solution than the one that can be obtained using the finite–difference
method [8]. Nevertheless, in the case of abrupt HBTs, this method cannot be applied di-
rectly, as the properties of the material of the different regions that form abrupt HBT tran-
sistors are different. To avoid this problem, we have introduced a modified mesh, which is
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Figure 1: Structure formed by two different materials

characterized by the fact that we have separated the nodes that belong to each region of the
HBT. In this way we have two nodes in the same physical position belonging to different
regions and each element belonging to a single region.

In order to simplify the analysis, we can consider a 3D volume Ω formed by 2 regions
Ω1 and Ω2 with different properties, and a common surface S S, as the one shown in the
Figure 1. The scaled and simplified hole continuity equation with boundary conditions we
have to solve in the whole domain Ω is:

∇Jp�φp�r�� ��R�φp�r�� r �Ω (4)

p�∂ΩD
� peq (5)

∂p
∂ν

�����
∂ΩN

� 0 (6)

where peq is the hole concentration in equilibrium, ν represents the unit normal vector, and
the boundary ∂Ω splits into “Neumann segments”, ∂ΩN , and “Dirichlet segments” ∂ΩD

with ∂Ω � ∂ΩD�∂ΩN and ∂ΩD�∂ΩN � φ.

As the equations must verify themselves in each region we can restrict the potential
function φp to the subdomains Ω1 and Ω2, such as is verified that,

�φ1
p�φ2

p� � H1
ΓD1

�Ω1��H1
ΓD2

�Ω2� (7)

φ1
p�ΓD1

�φ2
p�ΓD2

� h (8)

where H1
ΓDi
�Ωi� is a subset of functions in H 1

0 (Sobolev class), whose functions are not null
on the ΓDi boundary, with ΓDi � �∂Ω1�∂Ω2��Ωi , and h is a specific function.

The mesh that we have used is adapted perfectly to this situation. The equations for
each regions are:

∇Jp�φ1
p�r�� ��R�φ1

p�r�� r �Ω1 (9)
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∇Jp�φ2
p�r�� ��R�φ2

p�r�� r �Ω2 (10)

Based on this formulation and considering the physicals characteristics of the hole
current densities, we can deduce the conditions that must be verified on the interface points:

�Jp�ΓD1��z � Jet
p (11)�

Ω1

Jp∇ξdV �

�
Ω2

Jp∇ξdV �
�

Ω
RξdV � 0 (12)

where in the equation 11 the term �J p�ΓD1��z indicates the z component of the hole current
density in Ω1 region on the ΓD1 boundary, and J et

p is the hole current density due to the
thermionic emission. This expression can be written as,

Jet
p � qνpeff

�
Nv2

Nv1
p�z�j �� p�z�j �e

� ∆Ev
KT

�
(13)

It is possible to use a similar procedure with the electron current density. The interface
nodes must be verified,

�Jn�ΓD1��z � Jfet
n (14)�

Ω1

Jn∇ξdV �

�
Ω2

Jn∇ξdV �

�
Ω

RξdV � 0 (15)

where �Jn�ΓD1��z is the z component of electron current density in Ω 1 on the boundary ΓD1,
and Jfet

n is the electron current density due to the thermionic emission and tunnel effect, it
can be expressed as,

Jfet
n � �qνneff

�
Nc2

Nc1
n�z�j ��n�z�j �e

� ∆Ec
KT

�
(16)

Parallel Implementation and Numerical Results

Our simulator was developed for distributed–memory multicomputers, using the MIMD
strategy (Multiple Instruction–Multiple Data) under the SPMD paradigm (Simple Program–
Multiple Data). Our program was implemented using the MPI message passing standard
library [9]. The main advantage of using this library is that it is presently implemented in
many computers, and this guarantees the portability of the code.

Poisson and continuity equations are discretized using the FEM with this new specific
formulation, as we have explained in the previous section. We have obtained a set of N
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Figure 2: Collector current density for InP/InGaAs HBT

nonlinear equations that is necessary to linearize and solve. With the purpose of lineariz-
ing the previous assembly set of equations, we have applied a modified iterative Newton
method. The coefficient matrices of these systems have a high rank,high sparse, very badly
conditioned and not diagonally dominant due mainly to the equations that we have had to
introduce in the interface nodes. To solve these problems we have used domain decomposi-
tion techniques. In order to be able to apply these techniques it is necessary to implement a
partitioning of the mesh into subdomains for which we have used the METIS program [10].
This program is an unstructured graph partitioning and a sparse matrix ordering system.

We have used a library of parallel sparse iterative solvers to solve these linear systems
in parallel [11]. The library consists of four major components, accelerators, preprocess-
ing tools, preconditioning routines, and message–passing tools. The accelerators are based
on Krylov subspace methods. These methods often work poorly without preconditioning.
The preconditioners provided with the library encompass a number of ‘standard’ options
for preconditioning distributed sparse matrices, such as additive Schwarz, multicolor block
SOR (overlapping multicolor multiplicative Schwarz), distributed ILU(0), approximate in-
verse preconditioners,etc. A great advantage of this library is that it is optimized for several
powerful multicomputers. Using MPI library, our program was tested on various platforms
such as the CRAY–T3E, a SUN clusters of workstations, the SGI Origin 2000, and Be-
owulf cluster. With this library we have studied several domain decomposition techniques
and solvers. In domain decomposition methods the equations are solved by means of a suc-
cession of solutions of local residual equations at each step. Also, we have tested several
preconditioners and the best results were obtained with the Additive Schwarz and Schur
complement methods. We have applied our simulator to a HBT transistor [12]. We have
used a nonstructurated tetrahedral mesh to simulate this device. The obtained collector
current density, is shown in Figure 2, and it is close to the experimental results.

Conclusions

In this work, we have developed a new formulation of electron and hole continuity
equations on the heterojunction interface. This model can be combined with finite element
method, and, in this way it is possible simulate abrupt HBT using multidimensional models.

In order to solve systems of linear equations, which is the most CPU time–consuming
part of the program, we have implemented a parallel simulator and we have tested different
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methods of domain decomposition, which present great advantages as opposed to the clas-
sic methods as regards speed and memory requirements. We have subsequently selected
the best ones to implemented in the simulator. The parallel code was implemented and
tested using the message passing interface library MPI on several platforms.

We have applied our model, and we have simulated a InP/InGaAs HBT using three–
dimensional numerical simulator. This model combines the drift–diffusion transport model
on the bulk on the semiconductor device with the thermionic emission and tunnel effect at
the heterojunction interface of abrupt HBT using finite element method.
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