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Summary 

 
The present paper deals with the numerical analysis of large elastic-plastic 

deformation and localization behavior of anisotropically damaged ductile solids 
within the framework of nonlocal continuum mechanics. The idea of bridging the 
length-scales is realized by using higher-order gradients in the evolution equations of 
the equivalent inelastic strain measures. Estimates of the stress and strain histories are 
obtained from a numerical integration algorithm which employs an inelastic predictor 
followed by an elastic corrector step. This leads to a system of elliptic partial 
differential equations which is solved via the finite difference method at each 
iteration of the loading step. Numerical simulations demonstrate the efficiency of the 
formulation and show the influence of several model parameters on the deformation 
prediction of tension specimens. 

 
Introduction 

 
The accurate and realistic description of inelastic behavior of ductile materials 

and structures as well as the development of associated efficient and stable 
numerical solution techniques are essential for the solution of numerous boundary-
value problems occurring in engineering. Large inelastic deformations of metals 
are usually accompanied by damage processes due to the nucleation, growth and 
coalescence of micro-defects. The proper understanding of these mechanisms and 
their mechanical description are of importance in discussing the mechanical 
effects of the material deterioration on the macroscopic behavior of solids as well 
as in elucidating the mechanisms leading to final fracture. The proposed 
continuum damage model uses a continuous variable which is related to the 
density of the defects in order to describe the deterioration of the material. In this 
context, nonlocal effects seem to be important when deformation mechanisms 
governed by microscopic phenomena as well as scale effects are considered in 
order to explain and predict certain experimentally observed critical phenomena. 
For example, gradient theories [1] represent a constitutive framework on the 
continuum level that is used to bridge the gap between the micro-mechanical level 
and the classical continuum level through the incorporation of intrinsic material 
length parameters into the constitutive model [2]. 
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Fundamental governing equations 
 

A nonlocal generalization of the framework presented by Brünig [3,4] is 
proposed to describe the inelastic deformation behavior of ductile metals. The 
anisotropic continuum damage model is based on the introduction of damaged as 
well as fictitious undamaged configurations related via metric transformations 
which allow for the introduction of damage strain tensors. The modular structure 
is accomplished by the kinematic decomposition of strain rates into elastic, plastic 
and damage parts which take into account the physics of these deformation 
processes. Furthermore, respective Helmholtz free energy functions are formulated 
with respect to fictitious undamaged and to current damaged configurations. In 
addition, to be able to minimize the analytical and numerical difficulties associated 
with general nonlocal formulations [5] the nonlocal concept is applied only to 
those parameters which cause material softening while the elastic behavior is still 
assumed to be governed by a local formulation. Thus, the kinematic relations as 
well as the balance equations remain local, and the distribution of the stresses and 
displacements is still governed by the standard differential equations of 
equilibrium and the associated boundary conditions. On the other hand, to be able 
to address equally the two physically distinct modes of irreversible changes, i.e. 
plastic flow and ductile damage, a macroscopic nonlocal yield condition is 
employed to adequately describe the onset and continuation of plastic flow of 
ductile metals observed experimentally and the concept of a nonlocal damage 
surface is used to designate the onset and evolution of anisotropic damage. 
Nonlocal plastic and damage effects are described via additional length quantities 
which play the role of material parameters bridging the gap between microscopic 
variables and the classical continuum variables considering weighted averages of 
the corresponding local plastic and damage variables over a material volume of the 
body.  

 
The effective specific free energy φ  of the undamaged matrix material is 

decomposed into an effective elastic and an effective plastic part 
 

( ) ( )ˆ, ,el el plφ φ φ γ γ= +A                                                                               (1) 

 
where elA  is the effective elastic strain tensor, γ  and γ̂  denote an internal plastic 
variable and its nonlocal counterpart, respectively. In addition, plastic yielding of 
the matrix material is described by the nonlocal yield condition 
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where 1 trI = T  and 2
1 dev dev
2

J = ⋅T T  are invariants of the effective stress tensor 

T , c denotes the strength coefficient of the matrix material and a represents the 
hydrostatic stress coefficient [6]. 
 

Moreover, the Helmholtz free energy function of the damaged material sample 
is assumed to consist of three parts: 

 

( ) ( ) ( )ˆ ˆ, , ,el el da pl daφ φ φ γ γ φ µ µ= + +A A .                                                 (3) 

 
In particular, the elastic free energy elφ , which is an isotropic function of the 

elastic and damage strain tensors, elA  and daA , is used to describe the decrease 
of the elastic material properties and of the stored energy of the damaged material 
at the current state of deformation and material damage compared to the response 
of the virgin undamaged material. In addition, the energies plφ , due to plastic 

hardening, and daφ , due to damage strengthening, only take into account the 
respective internal state variables, γ  and µ , as well as their nonlocal counterparts 
γ̂  and µ̂  which are taken to be volume averages of γ  and µ , respectively.  
 

Furthermore, evolution of damage is described by the nonlocal damage 
criterion 
 

( ) ( )1 2 1 2 ˆ, , , 0 ,daf I J I Jσ β σ µ µ= + − =%% %=                                                    (4) 
 

where β% represents the influence of the deviatoric stress state on the damage 
condition and σ% denotes the equivalent damage stress measure. 

 
Numerical aspects 

 
On the numerical side a key aspect in the numerical treatment of inelastic 

continuum models using the finite element method is the numerical integration of 
the nonlinear constitutive equations governing the flow and damage behavior as 
well as the evolution of internal state variables. Estimates of the irreversible strain 
histories are obtained via a gradient-enhanced version of the inelastic predictor 
method. In the inelastic predictor step the entire incremental deformation is 
assumed to be inelastic. This leads to an overestimation of the equivalent inelastic 
strains which have to be corrected. In the elastic corrector step the nonlocal plastic 
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and damage correctors, ˆerγ∆  and ˆerµ∆ , are expanded in respective Taylor series, 
e.g. 

 

( )
2

2ˆ ... ...er
er er pl er pl erd dγγ γ γ γ∂ ∆

∆ = ∆ + + = ∆ + ∇ ∆ +
∂ ⋅∂x x

,                                 (5) 

 
where only terms up to second order are retained and pld  takes into account a 
plastic internal length scale [6]. This leads to the system of coupled elliptic partial 
differential equations for the estimates of the correctors of the equivalent plastic 
and damage strains 
 

( ) ( )2
1 1 1 22 2pl pl er er er pr

c cm d G k G k c c tγ γ µ
γ γ

 ∂ ∂
∇ ∆ + + ∆ + ∆ = − ∂ ∂ 

           (6) 

 
and 
 

( ) ( )2
2 4 2 32 2 .da da er er er prm d G k G k tσ σµ µ γ σ σ

µ µ
 ∂ ∂

∇ ∆ + + ∆ + ∆ = − ∂ ∂ 
    (7) 

 
where 1G  and 2G  as well as 1 4,...,k k  represent modified material parameters [4] 
and plm  and dam  denote the relative weights of the nonlocal effects compared to 
the local ones. Equations (6) and (7) are solved via a standard finite difference 
method employing an overlay mesh defined by the Gaussian integration points of 
the underlying finite element mesh. The global weak equilibrium equations, on the 
other hand,  are solved using standard displacement-based finite elements and the 
associated linearized variational equations are derived from a consistent 
linearization algorithm. At the end of each time step equivalent plastic and damage 
strain increments are computed simultaneously which then lead to the 
corresponding tensorial quantities employing an integration scheme with an 
exponential shift. 
 

Numerical example 
 

The numerical example deals with the finite deformation and localization 
behavior of uniaxially loaded rectangular specimens with clamped ends. The 
corresponding load-deflection curves are shown in Fig. 1 based on the gradient-
enhanced elastic-plastic material model without damage, including isotropic 
damage and including anisotropic damage discussed above, respectively. In 
particular, Fig. 1 shows that with the onset of damage the numerical calculations 
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including isotropic and anisotropic damage show rapid loss in load carrying 
capacity with increasing elongation of the specimen which agrees quite well with 
experimental observations. 

 
Fig. 1: Load-deflection curves 

 

 
Fig. 2: Evolution of void volume fraction 
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Fig. 2 shows the evolution of the void volume fraction f with increasing 
equivalent plastic strain γ . The numerical calculation for the isotropic damage 
model shows an increase in void volume fraction after the onset of damage. The 
point where the two curves based on the isotropic and the anisotropic model 
separate characterizes the onset of anisotropic damage which leads to an even 
larger increase in void volume fraction with growing plastic strain. 
 

Conclusions 
 

A gradient-enhanced anisotropic damage theory for ductile metals and its 
numerical treatment have been discussed. The proposed large strain damage theory is 
a robust and efficient framework to develop structural models capable for providing 
practical solutions of general problems in engineering. 
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