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Summary 

Operating theatre is always the most important and expensive sector of hospitals. 
Considering the recent environment pressure, this sector is surely to be significant to 
health-care institutions’ managers when they regard cost reduction programs as a primary tool 
for managing the system’s profitability. Our study aims to find out an efficient tool to 
minimize the total overtime cost of the operating theatre planning, especially the operating 
rooms (ORs) scheduling. 

Introduction 

Since the last decade, the medical system is under the pressure of environment’s change, 
such as the increasing population of old people and various diseases. Faced with such situation, 
hospitals have to take actions to develop the productive and quality of their service. What’s 
more, the largest hospital cost category was the operating theatre according to some study 
results. Therefore, how to reduce the operating theatre’s cost is always the hospitals’ manager’s 
objective. Meanwhile, the development of tools and methods for optimizing the function of 
this surgical unit is definitively to be many researchers’ focus. 

In that case, we will try to find out a good solution for daily operating room scheduling 
problem in order to minimize total overtime cost. 

This paper is organized as follows: in section 1, the description is given for daily operating 
room scheduling problem; then, in section 2, we present the procedure of proposed memetic 
algorithm. At the end of this paper, computational experiment’s result is list.  

1 Problem description 

The daily operating room scheduling problem can be described as follows: 

From the beginning of a hospital’s working day, there are N patients waiting to be operated 
in operating rooms (Supposed that there are M operating rooms available that day). For 
simplifying this problem, some hypothesis are given: 1) All the patients’ pre-operations have 
already been done when the operating rooms open. 2) All the operating rooms are polyvalent 
so that each surgical operation can be operated in any of them. 3) In addition, the surgical 
operations can’t be stopped while being operated. 4) All the other resources needed by the 
surgical operations, such as the surgical equips, the surgical equipments and recovery rooms’ 
beds, are sufficient in this working day. 5) Moreover, for the sake of simplification, the urgent 
patients are supposed to be treated in other special operating rooms so that we can only 
consider the ordinary patients’ schedule in this paper. 

Informed by statistic materials, we can know in advance that each surgical operation’s 
operating time. What’s more, according to most hospitals’ timetable, all the M operating rooms 
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are opened and closed at a simultaneous time, respectively. Thus, a standard can be made that 
all the M operating rooms are ready at time 0 and will close at time d. In practice, if some 
surgical operations have to be finished after the supposed closing time d, the hospital should 
pay a certain fee for the additional time (overtime). Thus, the simplified operating room 
scheduling problem has a general objective to assign a number of patients into available 
operating rooms, in the simplest case they are identical, by minimizing the total overtime cost.  

Considering the description above, the operating rooms scheduling problem can be 
regarded as a special case of industrial scheduling problems, thus it is possible for us to treat 
our described problem as a parallel machines problem aiming at minimizing total weighted 
tardiness ∑wjTj, where the weights wj, j= 1, . . ., N are related to the operating cost of surgical 
operations; Tj=max{0,Cj-d} is surgical operation j’s possible additional time, Cj  is surgical 
operation j’s completion time and d is the operating rooms’ regular closing time. 

2 A proposed memetic algorithm  

Since minimizing-total-weighted-tardiness scheduling problems have already been proved 
to be strongly NP hard even for single machine case (Lenstra et al. 1977 [1]), the parallel 
machines total weighted tardiness problem is strongly NP hard in general. In conclusion, the 
currently stated problem is also NP hard. As we all know, even for the single machine case, 
instances with more than 50 jobs cannot be solved to optimality with state of the art of branch 
and bound algorithms (Matthijs den Besten et al., 2000 [2]). Therefore, many researchers have 
focused their study on heuristic methods, such as Genetic Algorithm (GA), Tabu Search, 
Annealing Simulation (AS) and so on, for solving NP-hard problems.  

Considering the good performance of GAs for NP-hard problems, especially motivated by 
Paulo M. França et al., 2001 [3], where a local-search-based memetic algorithm was proposed 
for a total tardiness single machine scheduling problem, we will also develop a heuristic-based 
memetic algorithm for the parallel operating rooms scheduling problem. 

2.1 Procedure of proposed heuristic-based memetic algorithm 

Before describing our heuristic-based memetic algorithm procedure, some parameters are 
given: Pop_size ( The individuals’ number of the constructed population); Pm (The probability 
of mutation for a certain selected individual); Pc ( The probability of crossover for a couple of 
selected parents); Max_Itr_Reproduce (The maximum reproduction iteration times).  

Step1: (initialization) construct an initial population POP={Indiv(i)| i=1,…,Pop_size}, 
where individual’ chromosome structure will be mention in section 2.2. 

Step 2: (Heuristic For Local amelioration) A COVERT heuristic procedure, mentioned in 
section 2.2, is applied for each individual indiv(i), i=1,2,…, Pop_size , in order to ameliorate 
its performance.  

Step 3: (evaluation) Calculate each individual indiv(i)’s fitness Fi of assembly Pop and form 
a fitness array Fit=(F1,F2,…,Fpop_size). 

Step 4: (crossover) Select two individuals randomly by making a roulette wheel of fitness 
array Fit, crossbreed them for a new individual, and perform the COVERT procedure for this 
new individual, then accept the newly obtained individual indiv_C as a progeniture. After 
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doing this crossover step PPc=Pop_size*Pc time, we can get a progenitures’ assembly 
Offspring={Indiv_C1, Indiv_C2,…,Indiv_CPPc}. 

Step 5: (Mutation) Select one individual randomly from assembly Pop or Offspring , mutate 
it according to a proposed mutation rule (see section 2.2) for a new progeniture Indiv_M, Do 
this mutation action PPm=Pop_size*Pm times and add all the new generated progenitures into 
the former progenitures’ assembly Offspring obtained in step 4, then we can get an extended 
assembly: Offspring={Indiv_Ci|I=1,…,PPc}U{Indiv_Mj|j=1,…,PPm}. 

Step6: (Elitist selection) Select the individual, who performs best among all the individuals 
of assemblies Pop and Offspring, and let it be one member of the new population; 

Step 7: (Reproduction) Calculate a fitness array for all individuals in assembly Pop and 
Offspring, then construct the new population Pop for the next iteration by making roulette 
wheel selection Pop_size-1 times according to fitness array. 

Step 8: (Stop test) If the reproduction times equal to Max_Itr_reproduce or the convergence 
degree of the present population is larger than 95%, stop this procedure and let the best 
performing one as our solution; otherwise go back to Step 3.  

2.2 Detail of the memetic procedure’s sub-procedures and rules 

1) Coding and Initializing Population 

We code each scheduling solution as an N+M-1 dimensions integer array and call it an 
individual or a chromosome. Its first part, consisting of N integers, denotes the possible 
operating order of surgical operations and each member represents a certain surgical 
operations’s serial; The second part, composed of M-1 integers, represents the partition 
symbols. In the following, we will try to explain this coding strategy by considering a simple 
example assigning 9 surgical operations into 3 operationg rooms, whose chromosome structure 
is showed in figure 1.  

P 2 5 8 1 3 4 6 7 9 4 6 

Figure 1: coding of a certain surgical operations’ assignment 

  According to this coding, the first member of the second part is 4, that means the first four 
surgical operations 2,5,8,1 are scheduled to the first operating room in order {2 5 8 1}; the 
surgical operations between position 4 and 6 of the first part, i.e., surgical operations 3 and 4 are 
assigned in order {3 4}to the second operating room; Finally, the rest three surgical operations are 
assigned to the last operating room in order {6 7 9}. 

2) Heuristic For Local Amelioration. 

This sub-procedure is to try to ameliorate the performance for each operating room when it 
has once been assigned a set of surgical operations. Considering the results given by Morton et 
al. 1993[4], a COVERT heuristic procedure is used to improve an individual S who means a 
schedule of assigning Nk,s surgical operations into operating room ORk , respectively. 

Procedure COVERT: 

Step 1: Set G={1,…,Nk,s}, t0=0; 

Step 2: For each surgical operation j of un-scheduled surgical operations’ set G, calculate its 
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parameter COVERTj =(wj/pj)*Max{0,1-Max(0,dj-t0-pj)/(k*pj)},where k=2.                            

Step 3: chose the surgical operation j whose COVERTj is the largest, and schedule it for 
processing next starting at time t0. 

Step 4: Let t0=Cj, G=G\{j}. If there are still members in G, go to step 2. 

3) Crossover 

Here, a well-known crossover procedure named order crossover (OX), proposed by 
Goldberg, 1989[5], is applied to crossbreed two parents P1 and P2 for a progeniture O: 

Step 0: (Propagate the partition structure) Copy the last M-1 positions’ value(the second 
part of chromosome) from one selected parent, such as P1, into the offspring O; 

Step 1: (get genes from one parents) Copy a randomly selected sub-part from the first N 
integers(the first part of chromosome) of the same parent P1 in to offspring O; 

Step 2: (complete the rest genes by the other parent) Copy the remaining genes from the 
first part of the other parent P2 by making a left-to-right scan. 

4) Mutation 

Considering each individual (chromosome) is composed of two parts, we propose two 
mutation rules for these two parts respectively: 
a) (Swapping mutation rule for the first part representing interventions’ operating order):  

Firstly, select two random positions among them ; then, swap these selected two genes. 
b) (Mutation rule for the second part—the part of partition symbols).:  

Motivated by Liu Min et al.,1999[6], our rule is as follows: Firstly, randomly generate an 
integer k from [0,N] and an integer j from [N+1, N+M-1], respectively; then replace the 
value of jth position in the selected individual(chromosome) with the generated k if k 
doesn’t equal to that value, otherwise, re-generate this integer k until they are different.  

5) Fitness for Evaluation and Reproduction 

A |SS|-dimension fitness array is obtained for the current individuals’ assembly SS , 
containing |SS| individuals, by means of calculating its relative advantage of objective function. 
The detail is as follows: 

Step 0:Let ( ) sw ffsF −= where SSsTwf
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Step 2: (roulette wheel selection): 

  Step 2.1: Calculate 








∈=== ∑
=

s

k
kss SSsprwrwrwRW

1
0 ,,0|  

  Step 2.2: Generate randomly Sel_Num real numbers λk ,k=1,...,Sel_Num, that are uniformly 
distributed between 0 and 1. (Note: for the crossover selection, Sel_num=2; for the new 
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population selection Sel_num=Pop_size). 

  Step 3.3: If rws-1< λk < rws, individual s is selected as the crossover parents or an individual 
of new population). 

3 Numerical experiment 

For not having found any benchmark problem in the literatures, we make a comparison 
between our proposed heuristic-based memetic algorithm (MA) and its corresponding general 
genetic algorithm (GA) on a set of randomly generated problems by using the same CPU time. 

3.1 Data  

The numbers of surgical operations are [N: 10,20,30, 40, 50, 60]. The numbers of 
operating rooms are [M: 2,4,6]. The surgical operation duration pj are integers and are 
generated from uniform distribution [1,20]. Their weights wj are also integers and are 
generated from uniform distribution [1,10]. As for the due date, i.e. the operating rooms’ 
closing time, is assumed to be a same integer for all surgical operations according to a real 

parameter β: ∑ =
+=

n

j jpPd
1

β , where β=0.25 for N<=25 and β=0.05 for N>25, P  is all the 

interventions’ average processing time. 

3.2 Lower Bound 

A lower bound is developed according to Azizoglu et al. 1998[7] and Yalaoui et 
al.2002[8].Azizoglu et al., 1998[7] calculated a lower bound for a parallel machines tardiness 
minimization problem by allowing job splitting. Yalaoui et al. 2002[8] proposed another 
method called multiple shortest processing time lists (MSPTL) for the same kind of problem. 
Without loss of generality, we assume that jobs are indexed in the SPT order, namely, 
p1≤p2≤…≤pN. Then, developed two lower bounds according to formulas(1) and (2), 
respectively and always accept the bigger one. 

LB_M: This lower bound is equivalent to allowing job splitting and it is developed from 
the lower bound method of Azizoglu et al., 1998[7] according to theorems 1 and 2: 

∑ ∑
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Where w[i] is the ith smallest weight among all the un-sequenced jobs and d is their 
common due date. 

LB_F: The following lower bound method is developed from the lower bound method of 
Yalaoui et al. 2002[8] thanks to theorem 3: 

For the kth (k=1, 2, …, M) single machine schedule, jobs for k to N are scheduled in 
increasing order of their indexes. Let Ck,j be the jth smallest completion time in the kth single 
machine schedule, wk,j be its corresponding weight, C_Wk,j be a structured element, i.e., 
C_Wk,j=(C,w)k,j where C_Wk,j.C=Ck,j,, C_Wk,j.w=wk,j. Let G be the set of these structured 
elements and rank all of them according to the completion times’ increasing order. Let 
C_WMWSPT,j be the jth element of the ranked set, then we can obtain a set 
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G’={C_WMWSPT,j=(C,w)MWSPT,j|j=1,…,N}. Thus, a lower bound can be calculated as: 

∑
=

−
N

i
jMWSPTLjMWSPTL dCWCwWC

1
,][, )0,._max(*._                               (2) 

Where C_WMWSPTL,[j].w is the jth smallest weight of set G’ and d is the common due date. 

Theorem 1: Let Ji and Jk be two common-due-date jobs such that pi≤pk, wi≥wk, and their due 
date is d. Then, there exists and optimal schedule in which Jk starts after the end of Ji. 

Theorem 2: Let Ji and Jk be two jobs such that pi≤pk, wi≤wk and they have a common due date 
d , Exchanging wi and wk does not increase the optimal total weighted tardiness. 

Theorem 3: Let two series of numbers (x1,x2,…,xN), (z1,z2,…,zN) and an ordered series 
(x1’,x2’,…,xN’) be so that 1) x1’≤x2’ ≤…≤xN’, 2) for j=1,…,N, xj’ ≤xj, 3) zj≥0,j=1,…N. If 
(z1’,z2’,…,zN’) is the series obtained by sorting the series (z1,z2,…zN) in non decreasing order 

and y>0, the following relation holds: ∑∑
==

−≤−′′
N
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jjj
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3.3 Results 

We have tested 20 times for all the 18 cases. In 333 tested problems (92.5%), the memetic 
algorithm (MA) performs better than the general genetic algorithm (GA). 
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