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Analysis of Reissner-Mindlin Orthotropic FGM Plates by
the MLPG
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Summary
A meshless local Petrov-Galerkin (MLPG) method is applied to solve ther-

mal bending problems described by the Reissner-Mindlin theory. Functionally
graded material properties with continuous variation in the plate thickness direc-
tion are considered too. A weak formulation for the set of governing equations
in the Reissner-Mindlin theory is transformed into local integral equations on lo-
cal subdomains in the mean surface of the plate with using a unit test function.
The meshless approximation based on the Moving Least-Squares (MLS) method is
employed for the implementation.

Introduction
Plate structures are widely used in many engineering structures such as aircraft,

civil and ship engineering. Plates are often subjected to combinations of lateral
pressure and thermal loading. However, many linear bending studies are focused
only to a lateral pressure load with assumption of uniformly distributed temperature
in the whole plate. The first thermoelastic analysis of plates including transverse
shear effects was performed by [1]. Reddy and Hsu [2] presented analytical solu-
tion for simply supported rectangular cross-ply laminated plates under sinusoidal
mechanical load and temperature is assumed to be varying linearly through the
thickness. Nonlinear analysis of simply supported Reissner-Mindlin plates sub-
jected to lateral pressure and thermal loading and resting on two-parameter elastic
foundations is given by Shen [3]. Recently, functionally graded materials (FGMs)
have been extensively used for engineering structures under a severe thermal load.
Praveen and Reddy [4] analyzed the thermomechanical response of thick plates
with continuous variation of properties through the plate thickness by FEM. Vel and
Batra [5] obtained an exact solution for three-dimensional deformations of simply
supported FGM rectangular plates subjected to mechanical and thermal loads.

Recently, the mesless local Petrov-Galerkin (MLPG) method has been also ap-
plied to Reissner-Mindlin plates under dynamic load by Sladek et al. [6]. Soric et
al. [7] have performed a three-dimensional analysis of thick plates, where a plate
is divided by small cylindrical subdomains for which the MLPG is applied. Homo-
geneous material properties of plates are considered in previous papers. Recently,
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Qian et al. [8] extended the MLPG for 3-d deformations in thermoelastic bend-
ing of FGM isotropic plates. In the present paper, the authors have developed a
meshless method based on the local Petrov-Galerkin weak-form to solve thermal
problems of orthotropic thick plates with material properties continuously varying
through the plate thickness. The Reissner-Mindlin theory reduces the original 3-d
thick plate problem to a 2-d problem. The Laplace-transform technique is applied
to the set of governing differential equations for elastodynamic Reissner-Mindlin
plate bending theory with Duhamel-Neumann constitutive equations. A unit test
function is used in the local weak-form. Applying Gauss divergence theorem to the
weak-form, the local boundary-domain integral equations are derived. The mesh-
less approximation based on the Moving Least-Squares (MLS) method is applied.

Local integral equations for Reissner-Mindlin plate theory
Consider an elastic orthotropic plate of constant thickness h, with the mean

surface occupying the domain Ω in the plane (x1, x2). The plate is subjected to
thermal loading with the temperature fieldθ (x, x3, t). The Reissner-Mindlin plate
bending theory is used to describe the plate deformation. Then, one can write [9]

u1(x, t) = x3w1(x, t), u2(x, t) = x3w2(x, t), u3(x, t) = w3(x, t), (1)

where wα(x1, x2, t) and w3(x1, x2, t) represent the rotations around the in-plane
axes and the out-of-plane deflection, respectively.

The linear strains are given by

ε11(x, t) = x3w1,1(x, t), ε22(x, t) = x3w2,2(x, t),
ε12(x, t) = x3(w1,2(x, t)+w2,1(x, t))/2,

ε13(x, t) = (w1(x, t)+w3,1(x, t))/2,

ε23(x, t) = (w2(x, t)+w3,2(x, t))/2.

(2)

In the case of orthotropic materials, the relation between the stress σi j and the
strain εi j when temperature changes are considered, is governed by the well known
Duhamel-Neumann constitutive equations for the stress tensor

σi j(x, t) = ci jklεkl(x, t)− γi jθ (x,x3, t), (3)

where ci jkl are the material stiffness coefficients. The stress-temperature modulus
can be expressed through the stiffness coefficients and the coefficients of linear
thermal expansion αkl

γi j = ci jklαkl. (4)

Next, we assume that the material properties are graded along the plate thickness,
and we represent the profile for volume fraction variation by

P(x3) = Pb +(Pt −Pb)V with V =
(

x3

h
+

1
2

)n

, (5)
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where P denotes a generic property like modulus, Pt and Pb denote the property of
the top and bottom faces of the plate, respectively, and n is a parameter that dictates
the material variation profile. Poisson ratios are assumed to be uniform.

The bending moments Mαβ and the shear forces Qα are defined as
⎡
⎣M11

M22

M12

⎤
⎦ =

∫ h/2

−h/2

⎡
⎣σ11

σ22

σ12

⎤
⎦x3dx3 and

[
Q1

Q2

]
= κ

∫ h/2

−h/2

[
σ13

σ23

]
dx3, (6)

where κ = 5/6 in the Reissner plate theory.

The bending moments Mαβ and shear forces Qα for α , β =1,2, can be expressed
in terms of rotations, lateral displacements of the orthotropic plate and temperature

Mαβ = Dαβ
(
wα ,β +wβ ,α

)
+Cαβ wγ ,γ −Hαβ ,

Qα = Cα (wα +w3,α) ,
(7)

where

Hαβ =
∫ h/2

−h/2
x3γαβ θ (x,x3, t)dx3.

The material parameters Dαβ and Cαβ are given as

D11 =
D1

2
(1−ν21) , D22 =

D2

2
(1−ν12) , D12 = D21 =

Ḡ12h3

12
,

C11 = D1ν21, C22 = D2ν12, C12 = C21 = 0,

Dα =
Ēα h3

12e
, D1ν21 = D2ν12, Cα = κhḠα3, e = 1−ν12ν21.

For a general variation of material properties through the plate thickness:

D11 =
∫ h/2

−h/2
x2

3E1(x3)
1−ν21

e
dx3, D22 =

∫ h/2

−h/2
x2

3E2(x3)
1−ν12

e
dx3,

D12 =
∫ h/2

−h/2
x2

3G12(x3)dx3, C11 =
∫ h/2

−h/2
x2

3E1(x3)
ν21

e
dx3,

C22 =
∫ h/2

−h/2
x2

3E2(x3)
ν12

e
dx3, Cα = κ

∫ h/2

−h/2
Gα3(x3)dx3. (8)

Equations of motion in Reissner’s linear theory of thick plates the may be writ-
ten as

Mαβ ,β (x, t)−Qα(x, t) =
ρh3

12
ẅα(x, t),

Qα ,α(x, t)+q3(x, t) = ρhẅ3(x, t), x ∈ Ω,

(9)
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where ρ is the mass density, and throughout the paper Greek indices vary from 1 to
2. The dots over a quantity indicate differentiations with respect to time t.

To eliminate the time variable t in the governing equations (10), the Laplace-
transform is applied. Then, one obtains

M̄αβ ,β (x, s)− Q̄α(x, s) =
ρh3

12
s2w̄α(x, s)− R̄α(x, s), (10)

Q̄α ,α(x, s) = ρhs2w̄3(x, s)− R̄3(x, s), (11)

where s is the Laplace-transform parameter, while R̄α and R̄3 are given by

R̄α(x, s) =
ρh3

12
[swα(x)+ ẇα(x)] , R̄3(x, s) = q̄3(x, s)+ρhsw3(x)+ρhẇ3(x).

The MLPG method constructs weak-forms of the above governing equations over
the local arbitrary sub-domains such as Ωs, which is a small region taken for each
node inside the global domain [6]. In the Laplace-transformed domain, these equa-
tions can be converted to the following local boundary-domain integral equations

∫

∂Ωi
s

M̄α(x, s)dΓ−
∫

Ωi
s

Q̄α(x, s)dΩ−
∫

Ωi
s

ρh3

12
s2w̄α(x, s)dΩ+

∫

Ωi
s

R̄α(x, s)dΩ = 0, (12)

∫

∂Ωi
s

Q̄α(x, s)nα(x)dΓ−
∫

Ωi
s

ρhs2w̄3(x, s)dΩ+
∫

Ωi
s

R̄3(x, s)dΩ = 0. (13)

The trial functions are approximated by the Moving Least-Squares (MLS) method
[6]. Substituting the MLS-approximations into the local boundary-domain integral
equations the system of linear algebraic equations of the unknown nodal values is
obtained.

Numerical results
Consider a simply supported square plate

with a side-length a = 0.254m and the plate
thicknesses h/a = 0.05. On the top surface
of the plate a uniformly distributed temper-
ature θ = 1deg is considered. The bottom
surface is kept at vanishing temperature.
The orthotropic mechanical properties of
the plate are considered with Young’s mod-
uli E2 = 0.6895 ·1010N/m2, E1 = 2E2, Pois-
son’s ratios ν21 = 0.15, ν12 = 0.3. The used
shear moduli correspond to Young’s modu-
lus E2, G12 = G13 = G23 = E2/2(1+ν12).
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Figure 1: A simply supported square plate
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Figure 2: Influence of orthotropic mate-
rial properties on the plate deflection

Figure 3: Variation of the deflection with
the x1-coordinate for an isotropic square
plate with FGM properties

The thermal expansion coefficients α11 = α22 = 1 ·10−5 deg−1.

The variation of the deflection with the x1-coordinate at x2 = a/2 of the plate
is presented in Fig. 2 with assuming isotropic thermal expansion coefficients. Op-
posite to mechanical load case [6] the deflection is not reduced in the orthotropic
plate as compared with the isotropic plate. It is due to increasing equivalent load
for orthotropic plate at the same temperature distributions in both cases.

Next, functionally graded material properties through the plate thickness are
considered.

The following isotropic material parameters on top side of the plate are used
in numerical analysis: Young’s moduli E2t = 0.6895 · 1010 N/m2, Poisson’s ratio
ν12 = 0.3. Linear and quadratic variations of volume fraction V defined in equation
(5) are considered here, and Young’s moduli on the bottom side are: E1b = E2b =
E1t/2. The variation of deflections with the x1-coordinate is given in Fig. 3.

Since Young’s modulus on bottom side is considered to be smaller than on
the top one, deflection for FGM plate is larger than for homogenenous plate. In
both linear and quadratic variations of Young’s moduli the same surface values are
considered. One can observe in Fig. 3 that the profile of the variation of material
properties has negligible influence on the deflection. But the deflection is influ-
enced by the surface values of material parameters on the bottom and top sides of
the plate.
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