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Brittle Fracture under Dynamical Loading with of
Accounting of the Crack Edges Contact Interaction

AN. Guz! and V.V. Zozulya®
Summary
The contact interaction of opposite faces of cracks in 2-D and 3-D solid is

studied. The case of a normal time-harmonic wave loading is studied in more
details. The distribution of stress intensity factors as functions of the wave number
is investigated. The results are compared with those obtained for cracks without
allowance for the contact interaction.

Introduction

In designing structures by methods of fracture mechanics, inertial effects due
to rapidly applied loads may have a significant effect [1, 2]. The action of the
dynamic load is transferred to the cracks by stress waves propagating through the
material. When the waves and the cracks interact, the crack edges may come into
close contact at some areas. It should be taken into account that during deforma-
tion of a solid, the opposite faces of cracks mutually interact with the unilateral
contact forces in the normal direction and the frictional contact forces in the tan-
gential direction. The contact zones, and the adhesion and sliding sub-zones appear
on the faces of cracks. The boundaries between contact and non-contact zones, and
also between adhesion and slipping sub-zones, are time dependant and unknown
beforehand. It implies the significant transformation of the stress-strain state in the
vicinity of crack front and the corresponding modification of the stress intensity
factors distribution. An analysis of problems of static fracture mechanics demon-
strates that taking into account the contact interaction of crack edges may affect
significantly the fracture mechanics criteria in dynamic problems and the effect of
this interaction may be much greater than in the static case.

The present paper is devoted to the solution of the 2-D and 3-D fracture dynam-
ics problem for cracks under incident harmonically waves. Different mathematical
formulations algorithm for the problem solution are presented. The problem is
solved with allowance for the contact interaction of the crack faces. The distribu-
tions of stress intensity factors for different wave numbers are investigated.

Formulation of the Problem
Arbitrary Loading
Let an elastic body in three-dimensional Euclidean spaceR> occupy a volume
V. The body’s boundary dV is piece-wise smooth and consists of sections dV, and
dV,, to which the vectors of surface load p(x,) and displacements u(x,?), respec-
tively, are assigned. There are N arbitrary oriented cracks with surfaces Q" UQ, ",
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where Q" and Q, are the opposite edges. The body may be subjected to volume
forces b(x,¢). The stress-strain state of the body is described by the displacement
equations of the linear dynamic theory of elasticity

Ajjuj+b; = pdfu;,  Aij= 180k + (A + 1) ;0; (1)

where d; and d; are derivatives with respect to a coordinate and time, respectively,
A and u are the Lame constants, and p is the density of the material.

The initial and boundary conditions are

ui(X,1,) = uf (x),  Qui(x,1,) = v} (x)
pi(x,t) = 0;;(x,t)nj(x) = yi(x,1), Vxe IV, 2)
ui(x,1) = @i(x,t), Vx €IV,

Here n; is a unit vector normal to the boundary dV'.

On the crack edges, the vectors of contact forces and displacement disconti-
nuity must satisfy unilateral contact constraints with friction in the form [2]

Auy, > _hoa dn > 07 (Aun +h0)Qn =0

3)
|‘I1:| < keqn = dAu; =0, |‘I1:| = keqn = dAu; = —Aqq,

where ¢,,q; and Au,,Au; are the normal and tangential components of the vec-
tors of contact forces and displacement discontinuity, respectively, Ay is the initial
crack opening, and k; and A; are coefficients depending on the properties of the
contacting surfaces Q" = ILVJle{ and Q™ = ILVJlQ; .
n= n—

Harmonic loading

Let us detail the case where an elastic body is under harmonic loading. For
simplicity we consider an infinite region. In [1] it was shown that the contact-
interaction vector is not harmonic and we cannot represent the unilateral conditions
in a harmonic form, because of their nonlinearity. This fact complicates the prob-
lem significantly. The stress-strain components have to be expanded into Fourier
series, which depend on the loading parameter ,

x.1) = Re{S p(x)e® ), w(x,1) = Re{S ull ()" @)

where

T T
® ®
= — / X,0)e " PMdr yl(x) = — / X,1)e @M, 5)
- 2n - 2n
0 0
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Substituting (4) into (1) and considering what has been said above, we obtain a set
of differential steady-state elastodynamic equations:

At + 0 n*uf =0, VX €V, n=0,%1,... *eo. (6)

The boundary conditions on the crack surfaces have the form

1(x,t VxeQ,, Vn#l
p?(x,o:{“ ! .

, 7
pi(x,t)+q'(x,1), Vxe€Q, Vn=1 @

where Q, = QT NQ~ is the close-contact region.

With this an approach, the initial-boundary-value problem (1), (2) with the
unilateral constraints (3) reduces to a countable set of boundary-value problems (6)
with the parameter ®’n? and the unilateral constraints (3).

Boundary Integral Equation
In [2] it was shown that the BIE that appears in many engineering applications

may be written, on a smooth boundary, in the following form

q:%u,-(y,o) :/(pj(x,o)*U,-j(X—y,o)—I—Mj(x,o)*W,-j(x,y,o))dS
|4

+ [ Bui(x, o)+ Wi(x,y,0)dS+ [ bj(x,)Upj(x—y, 9)aV

®)

q:%pi(y,o) :/(pj(x o)« K;j(x,y,®) +uj(x,0)xF;j(x,y,e))dS

—I—/Auj X, o) x Fi(X,y,® dS—I—/b x,e) xK;;(x,y,e)dV

Here e indicates ¢ for the time domain, ® for the frequency domain formulations
and zero for the statically problems, respectively. The plus and minus signs in (8)
are used for the interior and exterior problems, respectively. Sign * indicates the

convolution,
— [ r(@)ste-
3

in the time domain BIE formulation and a multiplication of functions otherwise. In
the case of scalar problem indices are omitted.

The kernels U;;(x —y,e), W;(X,y,e), K;j(X,y,®) and Fj;(x,y,e) in the BIE
(8) are fundamental solutions for the differential equations that correspond to the
problem under consideration. The integrals with such kernels are divergent and
need a special consideration in order to have some mathematical sense (see [2] for
details).
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Variational Formulation and Algorithm for the Problem Solution
Here will be considered variational formulations with emphasis on unilateral

contact and friction phenomena.
Let’s consider functional of Hamilton-Ostrogradskii

Dy [u;] :/[E(“) —K(V)+ < bi,u; >y — < Yi,u; >y, dt, )
g

on the set of admissible displacements

={u; e H"'(V x3), &;=1/2(du;+u), GijZCiijSkz;
Vi=3zui, gi=pvi, wi(x,1)=@i(x,1), VX €V, ui(x,10) =1u] x)} (10

The following notations have been used here: < -,- > denotes the duality pairing

for H*(V) and its dual functional space H *(V'), H*(V) is a Sobolev’s functional

space of index o/(ot > 0,0 = 0,00 < 0), E(u) = [ 1/2¢;ju€ij(u) e (w)dV is the to-
14

tal potential energy of the deformed body K(v) = f 1/2pv;v;dV is the total kinetic

energy, the expressions < b;,u; >y= [ bju;dV and < Wi, Ui >yy,= | wiudS rep-
v Wy
resent body forces and surface traction work respectively.

Variational formulation of elastodynamic problem with unilateral restrictions
and friction (2) consists in the following.

Find u; € Ky (u;) such that

Qpypc[u] = extr {¢L[u*]— sup q’f[é]?]} (11)
) qreKe( (ar)

u*cKy (l.l c qn)ng_

where
0, ifg,>0

. )
oo, otherwise

0, if [qc| =kgn
(O} =
«(ar) {oo, otherwise

®ilgi] = @, (qn) + D7(ar),  Pjy(gn) = {

K;(q,) = {g: € H '*°(Qx3),4, >0,¥x € Q" € 3} )
K;(dr) = {ar € (H (@ x3))%,|qe| < kegn, Vx € Q, Vi € 3}

The algorithm for solution of the contact problem with friction consists on two
parts. The first part of algorithm is a solution of the problem without unilateral
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constrains and friction. The second part consists in iterative process, which contin-
ued until the solution fulfill to the unilateral constrains and friction.

This algorithm is based on variational principles (11) and consists in the fol-
lowing steps
1. the initial distribution of the contact forces on the contact surface ¢¥(x,t), Vx &
Q, Vt € 3 is assigned;
2. the problem without constrains is solved and the unknowns quantities on the

region and /or on the boundary and also on the contact surfaces u;(x,t) are
defined;

3. the normal and tangential components of the vector of contact forces are
corrected to satisfy the unilateral restrictions and friction

q}z(xvt) = Pn[qg(xvt) _pn(Aurlz(th) —ho(X,t))],

q%(X,I) = Pf[qg(xvt) _pl'u%'(xvt)] (13)

where

0, ifg,.<0 q, if |qe| <keq
Pulgn] = o , Prlqe] = i 4 - i o
qn, if g, >0 qu”@? if |qz| < kegn

are operators for the orthogonal projection onto the sets g, > 0 and |q;| <
krqy, coefficients p, and p; are chosen based on the conditions that give the
best convergence for the algorithm;

4. then proceed to the second step of the iteration.

Numerical Results
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Figure 1:

Distribution of the normalized stress intensity factor versus wave number for
flat crack in plane and penny-shaped crack in space are presented in fig.1. Curves 1
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and 2 correspond to solution without counting and with counting contact interaction
of the crack faces.

The results presented here confirm the significance of taking into account the
contact interaction of crack faces. It should be taken into account in strength anal-
yses of structures by methods of fracture mechanics.
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