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3D Crack Growth by Considering Re-Entrant Corners
E. Schnack1, K. Kolk2, A. Dimitrov3

Summary
In fracture mechanics, corner and wedge singularities have to be considered for

two- and three-dimensional problems in isotropic and layered anisotropic continua.
To investigate the behaviour of crack propagation starting from corners and edges
the information about stress asymptotics in the vicinity of three-dimensional cor-
ner points is needed [1]. Thus, in this paper two aspects are studied: the interface
crack in layered anisotropic materials with re-entrant corners and surface cracks in
homogeneous isotropic continua. Moreover a strategy is presented to model such
surface breaking cracks efficiently within a numerical 3D simulation [2]. To study
the effect of geometrical singularities generalized stress intensity factors are de-
fined. Starting with KONDRATIEV’s Lemma an elliptic boundary value problem
has to be solved with homogeneous DIRICHLET/NEUMANN boundary data that
is generating a singular field in the vicinity of corner points. Afterwards the weak
form for the described problem is discretized by using the PETROV-GALERKIN
finite element method resulting in a quadratic eigenvalue problem. The quadratic
eigenvalue problem is solved iteratively by the ARNOLDI method [3], and fi-
nite element approximations of corner singularity exponents are computed. These
eigenvalues are the basis for the definition of generalized stress intensity factors in
the neighbourhood of corner points. For the a-posteriori control of the eigenvalues,
an error estimator is developed on the basis of the ZIENKIEWICZ-ZHU algorithm.
This approach to determine 3D singularities is tested herein for some typical ap-
plications in fracture mechanics. Known 3D singularities are a key input for the
formulation of an advanced 3D crack growth criterion [2].

keywords: Fracture mechanics, crack growth, 3D stress singularities, eigen-
value problems, corner and edge effects.

Introduction
This paper deals with the computation of three-dimensional singularities in

elasticity. Those singularities are present at non-smooth domains with corners,
edges and cracks and in case of jumping material constants from one layer to the
next. To simulate 3D fatigue crack growth appropriately to determine e.g. the
life-time of components the classical fracture mechanics parameters (K-factors and
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T-stresses) are needed. In case of arbitrary singularities so–called generalized stress
intensity factors are introduced. The numerics behind computing singularities will
be influenced by the regularity of the solution. On the basis of CÉA’s Lemma,
the convergence behaviour of those methods depends on the type of trial and test
functions. Classical polynomials can lead to problems regarding the convergence
behaviour. There are two options available to overcome this drawback, namely an
adaptive mesh generation or the consideration of the appropriate singularity in the
trial and test spaces. The type of singularities can be described for the displace-
ments in the following form:

|x|λ
N

∑
n=0

logn |x|Un (x/|x|) (1)

We understand asymptotic solutions from type (1) for that λ < 1.

Given is Ω of R3 as a bounded domain which cone shaped (see Fig. 1).

Figure 1: a) Solid Body with Singular, Conical Point O. b) Cartesian and Spherical
Coordinates at O.

We are defining K:

K :=
{

x ∈ R3 : 0 < |x|< ∞,x/|x| ∈S
}

(2)

in an ε–region Uε
O :=

{
x ∈ R3 : 0 < |x|< ε

}
, which has the same coordinate point

O, so that we have
Ωε

O := K ∩Uε
O = Ω∩Uε

O. (3)

On Ω we have the mixed boundary value problem in elasticity

Lu := DT CDu = f on Ω
u = ū on ∂Ω0

Tu := t(u) = t̄ on ∂Ω1

(4)

We are looking for a solution of an equivalent mixed boundary value problem
of Ωε

O for which the transmission boundary |x|= ε has such DIRICHLET boundary
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conditions û that the solution of (4) is identical with the local solution around the
tip. Additionally, we define for |x| < ε only homogeneous boundary conditions.
We are looking for u of the LAMÉ-System:

Lu := f on Ωε
O,

u = û on ΓT ,

u = 0 on Γ0,

Tu := 0 on Γ1.

(5)

For the boundaries for DIRICHLET-, NEUMANN and transmission parts we
have the following:

Γ0 := {x : 0 < |x|< ε ,x/|x| ∈ γ0} ,

Γ1 := {x : 0 < |x|< ε ,x/|x| ∈ γ1} , (6)

ΓT := ∂Ωε
O\{Γ0 ∪Γ1} ,

where γ0 ∪ γ1 = ∂S,γ0 ∩ γ1 = /0 defining ∂S. We are using the disturbance theory
[4], so that we are introducing the scaled coordinates y = x/ε and after ε → 0, the
domain Ωε

O goes to the unbounded domain K. We can transform the LAMÉ system
to the following:

Lu = 0 on K,

u = 0 on ∂K0,

Tu = 0 on ∂K1,

(7)

where ∂K0 := {x ∈ ∂K : x/|x| ∈ γ0}, ∂K1 := {x ∈ ∂K : x/|x| ∈ γ1} defines the DIRICH-
LET- and NEUMANN-part of the boundary ∂K. For the spectral problem we come
now to the following formulation:

u(r,θ ,φ) = rλ U(θ ,φ) (8)

for which we have to consider the following equation set:

L̂(λ )U = 0 on S

U = 0 on γ0

T̂(λ )U = 0 on γ1

(9)

where γ0 and γ1 are DIRICHLET- NEUMANN-part of ∂S. The operator in (9) is a
so-called “operator pencil” A(λ ) for which we have the following properties (see
proof in [5]):
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1. A(λ ) is a FREDHOLM-operator for all λ ∈ C.
2. The spectrum of A(λ )consists of isolated eigenvalues with finite algebraic

multiplicity.
3. If λ0 is an eigenvalue of A(λ ), then this is also the case with λ̄0,−1 −

λ0,−1− λ̄0, where the geometrical and algebraic multiplicity of λ0 and −1−
λ̄0 are identical.

We are coming to the kernel theorem formulated by KONDRATIEV [6]. If u ∈[
H1(Ω)

]3
, we have the following asymptotic series:

u =
I

∑
i=0

k j

∑
k=0

Kikrλi lnk(r)Uik (θ ,φ) (10)

where λi are eigenvalues of the operator pencil and are called “singular exponents”,
Uik are the generalized eigenvectors and Kik are the amplitudes and are called “gen-
eralized stress intensity factors”. We have to consider that the strain energy must
be finite. In the following we are interested only in the singular part of the solution,
thus we restrict ourselves to

−0.5 < ℜe(λ ) < 1 (11)

where we have the logarithmic power series for the singularities. We understand
asymptotic solutions of the type |x|λ ∑N

n=0 logn |x|Un (x/|x|), for that λ < 1 and has
infinite gradients of the displacements.

Weak Formulation of the Problem
We search for a solution for u ∈ [

H1
(
Ωε

O

)]3 so that

B(u,v) = 0, ∀v ∈ [
H1

0 (Ωε
O)

]3
(12)

We introduce now different trial and test functions which are associated with the
operator pencil A(λ ):

u = rλ U(θ ,φ ) ∈ [
H1 (Ωε

O)
]3

v = Φ(r)V(θ ,φ ) ∈ [
H1

0 (Ωε
O)

]3
(13)

where Φ(r) is a scalar function with a compact support. Thus, we can formulate
the following:

For U ∈ [
H1(S)

]3
we get:

B̂(U,V;λ) = 0, ∀V ∈ [
H1

0 (S)
]3

(14)
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where B̂ (U,V;λ) depends polynomial on the operator λ and represents the weak
form of the operator pencil A(λ ). (λi, Uik) are only eigenpairs of A(λ ), if they are
at the same time weak solutions of (14).

The approximation with finite elements leads to: uh ∈ Uh ⊂
[
H1

(
Ωε

0

)]3 so that

B
(

uh,vh
)

= 0, ∀vh ∈ Vh ⊂
[
H1

0 (Ωε
O)

]3
(15)

where we have the situation that Uh 	= Vh. As different spaces are used for trial
and test functions, we are in the scheme GALERKIN-PETROV method. The dis-
placements are formulated in the sector (r,θ ,φ) ∈ [0,ε]×Δi, where we have the
following finite elements initial formulations:

uh
i (r,θ ,φ) = rλ N(θ ,φ)T−1

d di,

vh
i (r,θ ,φ) = Φ(r)N(θ ,φ )T−1

d bi.
(16)

The GALERKIN-PETROV approach leads to a non-symmetric stiffness-matrix, which
is the source of the fundamental equation for solving the eingenvalue problem:[

(K−D)+λ
(
DT −D−M

)−λ 2 (M)
]T

d = 0 (17)

The Solution of the Eigenvaue Problem
We have to solve now the eigenvalue problem:[

P+ λ̄ Q+ λ̄ 2R
]T

d = 0 (18)

with the definitions λ̄ = λ +1/2 and

P = K+
1
4

M− 1
2

(
D+DT )

,

Q =
[
DT −D

]T
,

R = −M.

(19)

The matrices P, R are symmetric whereas Q is skew-symmetric. For applying the
ARNOLDI-method [1, 3] we are doing the following transformation: λ̄x = λ̄ 2Rd
so that we get [

P 0
0 I

][
d
x

]
= λ̄

[−Q −I
R 0

][
d
x

]
(20)

with I as the identity matrix.

Since for our fracture mechanics problems we need eigenvalues in the interval
0 < ℜeλ̄ < 1.5, an additional spectral transformation λ̄ = 1/θ is applied[−Q −I

R 0

]
︸ ︷︷ ︸

A

[
d
x

]
= θ

[
P 0
0 I

]
︸ ︷︷ ︸

B

[
d
x

]
. (21)
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Finally, a standard eigenvalue problem

Xd̂−θ d̂ = 0 (22)

with X = B−1A and d̂ = [d,x]T is obtained.

Numerical Tests and Applications for 3D Crack Growth
We will discuss an elasticity problem with edge and corner singularities and

this for homogeneous and inhomogeneous material properties. The singular ex-
ponents will be discussed in dependence of material data. We are working with an
adaptive fine mesh series so that we can have the result for the first nine eigenvalues
for a residuum of 10−4 within one ARNOLDI-step (see Fig. 2).

 

Figure 2: Wedge-shaped crack with homogenous (left) and inhomogeneous mate-
rial (right). Reference Solution is given in [7]

With the known singular behaviour at arbitrary points one can easily switch to
a well–known formulation for smooth crack fronts [8]

σi j (r,φ ,P) =
III
∑

M=I

KM (P)√
2πr

f M
i j (φ )+Ti j (P)+o(1) , r → 0 (23)

to identify the classical stress intensity factors (SIFs) KM(P) (M=I,II,III) and the
corresponding T -stresses Ti j(P). The present wedge singularity has the known
value of λ =0.5 with a multiplicity of three, cf. Fig. 2 (left). A similar formulation
for corner points is given in Eq. (24).

σi j (ρ ,θ ,φ ,O) =
N0

∑
L=1

K∗
L (O)ρλL−1gL

i j (θ ,φ ,O)+T ∗
i j (O)+o(1) ,ρ → 0. (24)
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The stresses are primarily characterized by the asymptotic exponents λL and gener-
alized intensity factors K∗

L . The angular functions gL
i j (θ ,φ ,O) are defined with re-

spect to the spherical co–ordinate system (ρ , θ , ϕ), which is centered at the singular
point O. As the focus lies on the asymptotical behaviour the interval−0.5 < λL < 1
with L = 1,2, . . .,N0 is considered excluding the rigid body motion modes.

The classical SIF-concept only fails at some special points with λL not equal
to 0.5. But to be still able to apply this concept for the description of the behavior
in the crack near-field the SIFs are numerically defined at these particular points.
If λL is greater than 0.5 and less than 1.0 the stresses are still singular but weaker
compared to the square-root singularity. Hence, KM(P) tends to zero as P tends
to O. If λL is less than 0.5, KM(P) tends to infinity. Therefore, the asymptotic
exponents have to be known to determine even the classical SIF asymptotically.

Based on experimental evidence the propagating crack front is shaped that a
valid square–root singularity is present along the whole crack front providing a
unique crack front angle γ [8,9]. This guarantees a bounded energy release rate
that is additionally constantly distributed along the crack front. Consequently, this
strategy is part of a 3D crack growth criterion and realized in [2].
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Figure 3: Crack front shape of a single edge cracked beam under bending and
general intersection angles between the crack front and outer surface [9]
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