Stress Analyses of an ARES I-X Upper Stage Simulator Common Segment for a Critical Initial Flaw Size Assessment

Norman F. Knight, Jr. General Dynamics – Advanced Information Systems Chantilly, VA

> Dawn R. Phillips Lockheed Martin Mission Services Hampton, VA

Ivatury S. Raju NASA Langley Research Center Hampton, VA

Proposed abstract for the 15th International Conference on Computational and Experimental Engineering and Sciences (ICCES08), March 17-22, 2008, Honolulu, Hawaii

Abstract

The ARES I-X Upper Stage Simulator (USS) is a mass simulator element for the ARES I system. The USS is comprised of seven similar cylindrical shell segments, referred to as "tuna-can segments", and interface structures. Several tuna-can segments are identical in their design and are referred to as the common segments. Each tuna-can shell segment has a flange welded to each end allowing the different segments to be bolted together. Finite element models of a 10°-wedge repeating unit were developed for two adjacent tuna-can segments. These models are referred to as the two segment 10°-wedge models.

This paper summarizes the stress analyses performed supporting a critical initial flaw size assessment of the ARES I-X USS common tuna-can segments. Stress analyses of two segment 10°-wedge finite element models were performed to examine the stress state in the vicinity of the shell-to-flange weld. Elasto-plastic, large-deformation simulations were performed.

Stress levels were well below the material yield stress for the bounding axial tensile design load derived from all aspects of a typical mission profile. Fit-up stresses due to flange-surface mismatch during assembly were also examined. Flange-surface mismatch was shown to have a significant effect on the maximum axial tensile stress at the top of the fillet weld for the CIFS analyses. These stress levels were used in the fatigue crack growth assessment.