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Implementation of a Viscoelastic Constitutive Model
Using the Object-Oriented Programming Approach
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Summary
The numerical implementation of the time-dependent linear viscoelastic con-

stitutive model using object-oriented programming is discussed here. This paper
is divided in two main parts: (i) a brief discussion of the numerical integration of
linear viscoelastic constitutive equations, including the use of Prony series for char-
acterization of viscoelastic materials (e.g. asphalt pavement surfaces) and (ii) the
class organization and methods implemented in viscoelastic related classes of an
object-oriented framework. The implementation is part of an ongoing development
Finite Element (FE) computer system for pavement analysis and research.

Introduction
There is a still a current need for new methodologies for pavement analysis

and design that can more accurately predict pavement distresses. The evolution of
numerical methods such as the Finite Element Method (FEM) and the Boundary
Element Method (BEM) has made the mechanistic-empirical methods more pop-
ular for pavement analysis applications. Nevertheless, it is generally assumed the
pavement system to have a linear elastic behavior and subjected to static loads. Ef-
forts to implement more advanced material models as well as dynamic loading in
pavement analysis are found in [1] and [2], respectively.

Asphalt mixtures are known to present a viscoelastic behavior and many mod-
uli can be used to describe their viscoelastic behavior, in both time and frequency
domain [3, 4, 5, 6, 7, 8]. Christensen [3] mentions that for isotropic materials it
is convenient to divide the material characterization in two parts: simple shear and
dilatation. A reasonable simplification is to assume a constant Poisson’s ratio ν
[9], therefore requiring a single material characterization. In fact, it is convenient
to perform a simple shear test in frequency domain and then interconvert to a di-
latation expression in time domain [6], for proper use in a Finite Element code.
The latter modulus, named relaxation modulus E(t), is experimentally obtained for
constant strain, that is ε(t) = H(t −τ0)ε0, where H is the unit step function and ε0

is a prescribed strain [3, 4]. A proper mathematical representation of the relaxation
modulus E(t) is an exponential series (1), also known as Prony series, fitted with
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the collocation method [5].

E(t) = E∞ +
p

∑
i=1

Eie
−t/ρi (1)

The number of terms p is usually between 5 and 11 terms and depends on the
time range of material behavior. The use of a Prony series (1) is due its semi-group
property which enables a computationally efficient recursive expression to update
the stress field [10].

Numerical Implementation of Linear Viscoelasticity
The numerical implementation of the viscoelastic model can be performed by

direct integration of the convolution integral (2) in some set of discrete time [3].

σ =
t∫

t0=0

E(t−τ)
∂ε
∂τ

dτ (2)

Although this is the most direct manner [11], it is computationally inefficient.
In fact, using such approach to evaluate the response of a given discrete time t +Δt,
it is mandatory to store the response of all previous discrete times from initial
time of loading t0 = 0 to immediately previous discrete time t [12, 13]. It requires
significant storage memory and computational effort, even in the case of isotropic
materials. To deal with such computational drawbacks, alternative formulations
have been proposed by many authors [13, 14, 15, 16, 17, 18].

In this paper we present an incremental numeric method for the isotropic linear
viscoelastic constitutive model characterized by a Prony series (1), which is simple
to implement in a Finite Element program [15, 19]. This method was first proposed
by Taylor et al. [18] and it enables a computationally efficient recursive expression
to update the stress field. For the sake of convenience, the expressions that follow
are proper for the one-dimensional case, but this method was also implemented for
two-dimensional (plane stress, plane strain), axisymmetric and three-dimensional
isotropic cases.

According to Eq. (3), we assume stress σt is known at a given discrete time t
and the current stress σt+Δt is updated by an incremental quantity Δσ . Applying
the convolution integral (2), the amount of stress increment Δσ can be divided into
two basic parts (4). Applying Prony series (1) in the first part of the r.h.s. of Eq.
(4) we can find a closed form for modulus E indicated in Eq. (5).

σt+Δt = σt +Δσ (3)

Δσ = EΔε +Δσ̂ (4)
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E = E∞ +
1
Δt

p

∑
i=1

Eiρi(1−e−Δt/ρi) (5)

The main task in this method is to provide an efficient expression to evaluate
the second term of the r.h.s of Eq. (4). Again, using the convolution integral (2) and
Prony series (1), we can analytically develop Eq. (6) containing internal recursive
variables Si(t) (7), which depends only on the respective internal variables of the
second previous time of interest t −Δt. The internal variable at initial time Si(t0)
can be considered zero without incurring in much error. This formulation express
an efficient recursive way to update the stress, avoiding direct numerical integra-
tion of the convolution integral and consequently this method saves computational
memory and effort.

Δσ̂ = −
p

∑
i=1

(
1−e−Δt/ρi

)
Si(t) (6)

Si(t) =
[
e−Δt/ρiSi(t−Δt)+Eiρi(1−e−Δt/ρi)

] Δε
Δt

, i = 1, . . ., p (7)

When the formulation previously described is considered in a generalized two
or three dimensional Finite Element problem, the basic local equilibrium equation
assumes the vector form in Eq. (8) [13], where B is the stress-strain matrix and ft+Δt

is the current external force vector. For the isotropic formulation the modulus E (5)
is still a scalar, but the stresses σt (first part of r.h.s of Eq. (5)), Δσ̂ of Eq. (6) and
the incremental displacement Δu are vectors. The latter substitutes the incremental
strain. (∫

V
BT ĒBdV

)
Δu = ft+Δt −

∫
V

BT (σt +Δσ̂ )dV (8)

OOP Approach for Viscoelastic Constitutive Model Implementation
In the development of large and complex computational systems based on Fi-

nite Element Method (FEM) it has been commonly adopted the paradigm of object-
oriented programming (OOP) [20, 21, 22]. The central principles of OOP as class
definitions, inheritance and polimorfism improve the efficiency, reusability, data
management and increases maintainability of a computational system [21, 22, 23,
24]. The viscoelastic constitutive formulation described in the previous section
was numerically implemented in a FE computer system under development that
use OOP techniques and whose hierarchy of the main classes is described in Figure
1. The relationships among these main classes if of type “has a”. For generality,
these main classes are abstraction of essential components of the Finite Element
Method [23]. This paper concern just in the classes related to the viscoelastic con-
stitutive material. For more details of the description of all classes the reader is
referred to [20, 25].
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Node Element Material Load

Analysis Model ConstitutiveModelIntPointShape

Figure 1: Classes hierarchy of FE computer system

For the viscoelastic constitutive model implemented, a derived class MatVis-
coElastic from Material abstract class storages material parameters – Poisson’s ra-
tio ν and coefficients E∞, Ei, ρi of Prony series (1) – and creates query methods to
be used by other classes. On the other hand, the ConstitutiveModel abstract class is
responsible for the computation of the current stress vector σt+Δt for a given strain
vector εt+Δt . The current development of the ConstitutiveModel base class enables
the classical linear elastic, two resilient models for soils and the linear viscoelastic
analysis, as depicted in the derived classes presented in Figure 2.

ConstitutiveModel

LinearElastic TRBsoil UzanWitczakViscoElastic

Int Stress (cVector &, cVector &)

void Cmatrix (cMatrix &)

void UpdateState (void)

methods

Figure 2: Derived classes of ConstitutiveModel base class

The Constitutive Model has access to the Material data and AnalysisModel
methods through the associated element, so duplication of Material data is avoided
and minimizes the amount of computer memory required by the system [20]. It is
important to say that each region of the domain has a different stress/strain history,
so an object of the ConstitutiveModel class is defined for each integration point of
the finite element mesh [2, 13, 20]. Specifically looking at the viscoelastic problem,
a derived class ViscoElastic is created. The method Stress computes the stress field
according to proper corresponding vector expressions of Eqs. (3), (4), (5), (6) and
(7). For a general two/three-dimensional problem it was implemented the method
Cmatrix to compute the tangent constitutive matrix C. Finally, it was implemented
the UpdateState method to update the internal variables of the problem, such as
Si(t) of Eq. (5).

Example Problem
In order to validate the implementation the viscoelastic constitutive model dis-

cussed in this paper, this section shows a simple example of the radial displacement
ur of a thick-walled viscoelastic cylinder encased in a shell of infinite stiffness [15].
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The internal radius a, external radius b and constant internal pressure p0 are indi-
cated in Figure 3a. The Poisson’s ration used was ν= 0.30. The analysis was
performed in axisymmetric mode with the viscoelastic properties extracted from
[6] and presented in Table 1. The numerical responses were compared with analyt-
ical solution of Eq. (9) in which D(t) is the creep compliance interconverted from
relaxation modulus E(t) also extracted from [6].

Table 1: Prony series of viscoelastic material
E∞ i 1 2 3 4 5 6 7 8 9 10 11

(MPa) ρi (s) 2.E-2 2.E-1 2.E0 2.E1 2.E2 2.E3 2.E4 2.E5 2.E6 2.E7 2.E8
2.24 Ei (MPa) 194 283 554 602 388 156 41.0 13.8 3.68 0.790 0.960

(a) geometry and load 
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(b) radial displacement (r = 2.22m) 

Figure 3: Viscoelastic cylinder encased in a shell of infinite stiffness

ur(r, t) =
p0a2b(1+ν )(1−2ν)

a2 +(1−2ν)b2

(
b
r
− r

b

)
D(t) (9)

The results of Figure 3b indicate the time function radial displacement ur(r, t)
at radial position r = 2.22m. For FE numeric analysis it was evaluated two time
steps Δt = 20,000s and Δt = 1,000s, which are very small according to response of
viscoelastic material analyzed and constant load condition.

A good agreement between the analytic and FE results were found for both
time steps, which indicate a correct implementation of the viscoelastic constitutive
model on the proposed system for pavement analysis and research.

Conclusion
A formulation has been briefly reported for modeling the response of linear

viscoelastic materials, as asphalt pavement surfaces. This formulation was cor-
rect implemented in a Finite Element computer system for pavement analysis and
research using comprehensively Object-Oriented techniques, which enables more
efficient data management and simpler expansion of the code under development
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in order to include more accurate models for mechanistic pavement analysis.
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