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Numerical Investigation on Resonant Sloshing
Characteristics of 2-D Baffled Liquid Container
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Summary
Sloshing flow is formulated based on the linearized potential flow theory, while

an artificial damping term is employed into the kinematic free-surface condition to
reflect the eminent dissipation effect in resonant sloshing. Through the numerical
analysis of sloshing frequency response with respect to the number, location and
opening width of baffle, the sloshing damping characteristics by baffle are paramet-
rically investigated.

Introduction
In the resonant sloshing analysis, the damping effect should not be ignored in

order to prevent the divergence in the frequency response near resonance frequen-
cies. However, differing from the numerical sloshing analysis in time domain [1],
a consideration of full viscous flow for the case in frequency domain leads to com-
plicated large-scale matrix equations in the form of complex variable. In order to
reflect the damping effect while assuming inviscid liquid flow, Faltinsen [2] pro-
posed an artificial dissipation mechanism based on the Rayleigh damping concept.
A product of the artificial viscosity coefficient and the velocity potential gradient
is added into the Euler equation, from which the kinematic free-surface condition
with the artificial damping term is derived through a modified Bernoulli equation.
Where, the artificial viscosity coefficient is defined by the relative damping ratio to
the critical damping.

This paper investigates the resonance frequency response of liquid sloshing
in baffled 2-D tank by a finite element method. While employing the kinematic
free-surface condition with the artificial damping term, we formulate the resonance
frequency response according to the linearized potential flow theory. The reliability
of the numerical solutions is assessed by the comparison with the analytical solu-
tions [2]. The effects of baffle on the resonance sloshing response are investigated
with respect to the major baffle parameters.

Sloshing Flow in 2-D Rigid Baffled Container
Fig. 1 shows a two-dimensional rectangular tank with a pair of baffles in which

interior liquid is filled up to the height HL from the tank bottom in the stationary
condition. Both tank and baffle are assumed to be rigid, and the horizontal harmonic
excitation is applied to the whole tank. A Cartesian co-ordinate system is originated
at the center of the undisturbed free surface. Even though the baffle thickness is
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neglected, the boundary of the liquid domain Ω is composed of the liquid-structure
interface ∂ΩI and the free surface ∂ΩF .

Figure 1: Liquid sloshing in 2-D baffled tank by horizontal harmonic excitation.

We assume the liquid is inviscid incompressible and the sloshing flow irrota-
tional so that there exists a velocity potential function φ satisfying

∇2φ = 0, in Ω (1)

with the structure-liquid interface condition: ∇φ ·n = us ·n on ∂ΩI . Here, n denotes
the outward unit vector normal to the liquid boundary and us = {aω cosωt, 0} is the
tank velocity. To the free surface, we specify the linearized dynamic and kinematic
conditions given by

∂φ
∂ t

+gζ + μφ = 0, on ∂ΩF ,
∂φ
∂y

=
∂ζ
∂ t

, on ∂ΩF (2)

where ζ is the elevation of liquid free surface. Meanwhile, the term μφ is the
nothing but the artificial damping introduced to prevent the divergence phenomenon
at resonance frequencies. Taking the time derivative to Eq. (2) leads to a unified
free-surface condition given by

∂ 2φ
∂ t2 +g

∂φ
∂y

+ μ
∂φ
∂ t

= 0, on ∂ΩF (3)

The hydrodynamic pressure p and the free-surface elevation ζ in the linearized
sloshing flow with the artificial surface damping are calculated as

p = −ρ
(

∂φ
∂ t

+ μφ
)

, in Ω, ζ = −1
g

(
∂φ
∂ t

+ μφ
)

, on ∂ΩF (4)
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Finite Element Approximation in Frequency Domain
Applying the virtual work principle to Eq. (1), together with the boundary

conditions, leads to the following variational formulation:

∫
Ω

∇φ ·∇ψ dΩ =− 1
g

∫
∂ΩF

∂ 2φ
∂ t2 ψ ds− μ

g

∫
∂ΩF

∂φ
∂ t

ψ ds

+aω cosωt
∫

∂ΩR
I

ψ ds−aω cosωt
∫

∂ΩL
I

ψ ds
(5)

Here, ∂ΩR
I denotes the right side wall and ∂ΩL

I the left side wall of the tank, re-
spectively. We let φ be in function of cosine with the phase angle β and use 9-node
iso-parametric basis functions {Ni}N

i=1 to expand trial and test functions

φ =
N

∑
i=1

Ni φ̄i cos(ωt −β ), ψ =
N

∑
i=1

Ni ψ̄i cos (ωt −β ) (6)

Then, the previous variational formulation leads to the matrix equations given by

[
K −ω2M

]
φ̄ cos (ωt −β )−ωC φ̄ sin (ωt −β ) = ωF cosωt (7)

where φ̄ is defined by the vector of nodal velocity potentials. The matrices in Eq.
(7) are defined respectively by (C = μ M)

K =
∫

Ω
(∇N)T (∇N) dΩ, M =

1
g

∫
∂ΩF

NT N ds (8)

F = a
∫

∂ΩR
I

NT ds−a
∫

∂ΩL
I

NT ds (9)

In order to establish the modal equations of Eq. (7), we first compute the natural
sloshing frequencies and modes with

[
K −ω2M

]
φ̄ = 0 (10)

Realizing that the mass matrix M is restricted to only the finite element nodes of
the liquid free surface ∂ΩF , Eq. (10) can be decomposed as follows [3]:

[
KSS KSI

KIS KII

]{
φ̄S

φ̄I

}
−ω2

[
M 0
0 0

]{
φ̄S

φ̄I

}
=
{

0
0

}
(11)

Subscripts S and I are used to stand for the free surface nodes and the remaining
interior liquid nodes, respectively.
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According to the static condensation we obtain the reduced eigen matrix equa-
tions for the free surface sloshing given by[

KSS −KSIK
−1
II KIS

]
φ̄S −ω2M φ̄S = 0, φ̄I = −K−1

II KISφ̄S (12)

Next, we expand the nodal potential vector φ̄ in terms of only the sine modes among
NS natural modes such that

φ̄ (x;ω) =
N∗

S

∑
i=1

φ̄ i
n (x) · qi (ω) (13)

where qi are defined as the modal participation coefficients to be determined. Let-
ting Qk =

(
φ̄ k

n

)T
F and plugging Eq. (13) into Eq. (7) and premultiplying the

resulting equation by
(
φ̄ k

n

)T
lead to N∗

S uncoupled modal equations for {qk}:[(
ωk

n

)2 −ω2
]

qk cos (ωt −β )−ωμ qk sin (ωt −β ) = ω Qk cosωt (14)

Applying the basic relation of triangular functions to Eq. (14), one can derive the
angles and participation coefficients are determined according to

βk = tan−1

(
μω

(ωk
n )2 −ω2

)
, qk = ±ω Qk ·

[((
ωk

n

)2
−ω2

)2

+(μω)2

]−1/2

(15)
where qk is positive when ωn > ω and vice versa. Then, we finally have the finite
element approximation of the total velocity potential given by

φ =
N

∑
i=1

Ni

(
N∗

S

∑
k=1

qkφ̄ k
n cos (ωt −βk)

)
i

(16)

Numerical Experiment
We consider a baffled container under the horizontal harmonic excitation xS =

a sinωt, in which the number, the installation height and the opening width of baffle
are taken variable. Geometry, material and excitation data are recorded in Table 1,
where the excitation frequency ω taken as an input variable is varying with the
increment Δω of 0.001rad/s. The liquid domain Ω is uniformly discretized with
9-node quadratic elements such that the total element number is 300. Referring to
Fig. 2, baffles are installed with uniform vertical spacing and the occurrence of
zero-thicknessed baffle is numerically implemented by separating liquid nodes.

The effect of the baffle number on the frequency response of free-surface eleva-
tion near the fundamental resonance frequency is presented in Fig. 3. The relative
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Figure 2: Finite element mesh of a baffled container.

Table 1: Simulation data taken for the verification experiments
Liquid in tank External excitation
Liquid width (2d) 2.0m Excitation amplitude (a) 0.01m
Liquid height (HL) 1.0m Excitation frequency (ω) variable
Liquid density (ρ) 1,000kg/m3 Relative damping ratio (μ) 0.05

opening width dB/d of baffle is set by 0.5. Together with the baffle number, the res-
onance frequency and the peak elevation height show a uniform decrease. Thus, we
can obtain the sloshing suppression improvement by increasing the baffle number,
and this trend suggests that one can control the fundamental resonance frequency
by adjusting the baffle number.

                                (a)                                                               (b) 

Figure 3: Frequency response to the baffle number (dB/d = 0.5): (a) near funda-
mental resonance frequency; (b) near second resonance frequency.

Fig. 4(a) depicts the parametric variation of the free-surface elevation near
the fundamental resonance frequency with respect to the relative baffle height. The
peak elevation height and the resonance frequency reduce in proportional to the baf-
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fle installation height, and the reduction ratio becomes higher as baffle approaches
the liquid free surface. The importance of the baffle height is apparent at the sec-
ond resonance frequency, as shown in Fig. 4(b), such that the resonance response
displays a big difference above and below HB/HL = 0.7.

                               (a)                                                               (b) 

Figure 4: Frequency response to the baffle height (one baffle with dB/d = 0.5): (a)
near fundamental resonance frequency, (b) near second resonance frequency.

Conclusion
The resonance sloshing response of liquid contained in 2-D baffled tank subject

to the lateral harmonic excitation has been numerically investigated. We confirmed
the validity of the artificial damping introduced into the kinematic surface condi-
tion to reflect the eminent dissipation effect in the resonant liquid sloshing. As
well, the parametric effects of the baffle number and the baffle height have been
parametrically examined.
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