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Normal Modes of Rotating Timoshenko Beams
T.-L. Zhu1

Summary
A modeling method for flapwise and chordwise bending vibration analysis for

rotating Timoshenko beams is introduced. For the modeling method shear and the
rotary inertia effects are correctly judged based on Timoshenko beam theory. Equa-
tions of motion of continuous models are derived from a modeling method which
employs hybrid deformation variables. The equations thus derived are transmitted
into dimensionless forms. The effects of dimensionless parameters on the modal
characteristics of the Timoshenko beams are successfully examined through numer-
ical study. In particular, eigenvalue loci veering phenomena and integrated mode
shape critical deviations are contemplated and examined in this work.

Introduction
Rotating structures frequently occur in several types of engineering structures

such as turbines, turbo machines and aircraft rotary wings. In order to design the
rotating structures properly, there modal characteristics must be computed exactly.
In the present study, the equations of motion of rotating Timoshenko beams are
derived, using hybrid deformation variables introduced in [1], [2] and [3]. The
critical use of hybrid deformation variables which distinguishes the present mod-
eling method from other traditional modeling methods, is the key ingredient used
to derive the equations of motion rigorously. Moreover, the combined effect of
angular speed, hub radius, slenderness ratio, shear/extension modulus ratio on the
shear and rotary inertia (thus, on the modal characteristics) of Timoshenko beams
is successfully investigated in this study.

Equations of motion
In the present work, we use s, the arc length stretch, instead of u1 to measure

the displacement in the axial direction (see [1] for detail). We use u2b and u2s

as deformations due to bending and shear respectively along the x2 direction, and
u3b and u3s as deformations due to bending and shear, respectively along the x3

direction

The assumed mode approach will be used in the present study to investigate
the natural frequencies and normal modes of Timoshenko beams. By employing
the Rayleigh Ritz method the deformation variables are approximated as follows
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s(x, t) =
μ1

∑
i=1

φ1i(x)q1i(t) =
μ1

∑
j=1

φ1 j(x)q1 j(t) (1)

u2b(x, t) =
μ2b

∑
i=1

φ2bi(x)q2bi(t) =
μ2b

∑
j=1

φ2b j(x)q2b j(t) (2)

u2s(x, t) =
μ2s

∑
i=1

φ2si(x)q2si(t) =
μ2s

∑
j=1

φ2s j(x)q2s j(t) (3)

u3b(x, t) =
μ3b

∑
i=1

φ3bi(x)q3bi(t) =
μ3s

∑
j=1

φ3b j(x)q3b j(t) (4)

u3s(x, t) =
μ3b

∑
i=1

φ3si(x)q3si(t) =
μ3s

∑
j=1

φ3s j(x)q3s j(t) (5)

where φ1i, φ2bi,φ2si, φ3bi and φ3si are shape functions for s, u2b, u2s, u3b and u3s re-
spectively, and qi’s are generalized coordinates.

The equations of motion of a beam can be derived from the Lagrange’s equation

d
dt

(
∂T
∂ q̇i

)
−
(

∂T
∂qi

)
+

∂U
∂qi

= 0 i = 1,2, . . .,N (6)

in which, N = μ1 + μ2b + μ2s + μ3b + μ3s is the total number of generalized coordi-
nates, and U and T are the strain and kinetic energies of the beam, respectively,

U =
1
2

∫ L

0

[
EA

(
∂ s
∂x

)2

+EI3

(
∂ 2u2b

∂x2

)2

+EI2

(
∂ 2u3b

∂x2

)2

+
μAG

2

((
∂u2s

∂x

)2

+
(

∂u3s

∂x

)2
)]

dx (7)

T =
∫ L

0
ρ�a · ∂�v

∂ q̇i
dx+

1
2

∫ L

0

[
ρI3

A

(
∂ 2u2b

∂x∂ t

)2

+
ρI2

A

(
∂ 2u3b

∂x∂ t

)2
]

dx (8)

where E is Young’s modulus, A the cross-sectional area of the beam, μ the shear
co-efficient, G the shear modulus, I2 and I3 the second area moments of inertia,
respectively, L the length of the beam, �v and �a the the velocity and acceleration
vectors, respectively. The velocity vector can be obtain as

�v = {ṡ−
∫ x

0

[(
u′2b +u′2s

)(
u̇′2b + u̇′2s

)
+
(
u′3b +u′3s

)(
u̇′3b + u̇′3s

)]
dσ −Ωu2b−Ωu2s}�i1

+
[

u̇2b + u̇2s +Ω
[

r +x+
(

s− 1
2

∫ x

0

[(
u′2b +u′2s

)2 +
(
u′3b +u′3s

)2
]

dσ
)]]

�i2

+(u̇3b + u̇3s)�i3 (9)
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As the present study will be focusing on beams with constant cross-section, it
is useful to rewrite the equations of motion in a dimensionless form. For this trans-
formation several dimensionless variables and parameters are defined as follows:

τ =
t

T0
, ξ =

x
L
, θai =

qai

L
,

γ = ΩT0, δ =
r
L

, κ =
I2

I3
(10)

where, T0 is a time parameter, defined as

T0 =

√
ρL4

EI3
(11)

Substituting Eqs. (10) and (1) - (5) into the Lagrange’s equation, and ignoring the
coupling effect between bending and axial-stretching, we can obtain the following
linearized equations of motion for bending and shear.

μ2b

∑
j=1

(
M2b2b

i j +
1
β

MRI32b2b
i j

)
θ̈2b j +

μ2s

∑
j=1

M2b2s
i j θ̈2s j

+
μ2b

∑
j=1

{
γ2
(

KGB2b2b
i j +δKGA2b2b

i j −M2b2b
i j

)
+KB32b2b

i j

}
θ2b j

+
μ2s

∑
j=1

γ2
(

KGB2b2s
i j +δKGA2b2s

i j −M2b2s
i j

)
θ2s j = 0 (12)

μ2b

∑
j=1

M2s2b
i j θ̈2b j +

μ2s

∑
j=1

M2s2s
i j dxθ̈2s j +

μ2b

∑
j=1

γ2
(

KGB2s2b
i j +δKGA2s2b

i j −M2s2b
i j

)
θ2b j

+
μ2s

∑
j=1

{
γ2 (KGB2s2s

i j +δKGA2s2s
i j −M2s2s

i j

)
+β ηKS∗2s2s

i j

}
θ2s j = 0 (13)

μ3b

∑
j=1

(
M3b3b

i j +
1
β

MRI23b3b
i j

)
θ̈3b j +

μ3s

∑
j=1

M3b3s
i j θ̈3s j

+
μ3b

∑
j=1

{
γ2
(

KGB3b3b
i j +δKGA3b3b

i j

)
+KB23b3b

i j

}
θ3b j

+
μ3s

∑
j=1

γ2
(

KGB3b3s
i j +δKGA3b3s

i j

)
θ3s j = 0 (14)
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μ3b

∑
j=1

M3s3b
i j θ̈3b j +

μ3s

∑
j=1

M3s3s
i j dxθ̈3s j +

μ3b

∑
j=1

γ2
(

KGB3s3b
i j +δKGA3s3b

i j

)
θ3b j

+
μ3s

∑
j=1

{
γ2 (KGB3s3s

i j +δKGA3s3s
i j

)
+β ηKS∗3s3s

i j

}
θ3s j = 0 (15)

where, β and η are the square of the slenderness ratio and the material ratio, re-
spectively, defined as

β =
AL2

I3
, η =

μG
E

(16)

and

Mmn
i j =

∫ 1

0
ψmiψn jdξ (17)

MRI3mn
i j =

∫ 1

0
ψ ′

miψ ′
n jdξ (18)

MRI2mn
i j =

∫ 1

0
κψ ′

miψ ′
n jdξ (19)

KGAmn
i j =

∫ 1

0
(1−ξ )ψ ′

miψ ′
n jdξ (20)

KGBmn
i j =

∫ 1

0

1
2
(1−ξ 2)ψ ′

miψ ′
n jdξ (21)

KB3mn
i j =

∫ 1

0
ψ ′′

miψ ′′
n jdξ (22)

KB2mn
i j =

∫ 1

0
κψ ′′

miψ ′′
n jdξ (23)

KS∗mn
i j =

∫ 1

0
ψ ′

miψ ′
n jdξ (24)

in which, ψi j are shape functions of ξ .

The equations of motion (12) - (15) can be written as a matrix form,

[M]
{

θ̈
}

+[K]{θ} = 0 (25)

where [M] is the mass matrix and [K] is the stiffness matrix, each of order (μ2b +
μ2s +μ3b +μ3s) × (μ2b +μ2s +μ3b +μ3s).

{
θ̈
}

and {θ} are the (μ2b +μ2s +μ3b +
μ3s) × 1 acceleration and displacement vector coordinates, respectively,

[M] =

⎡
⎢⎢⎣

M11 M12 0 0
M21 M22 0 0

0 0 M33 M34

0 0 M43 M44

⎤
⎥⎥⎦ (26)
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[K] =

⎡
⎢⎢⎣

K11 K12 0 0
K21 K22 0 0

0 0 K33 K34

0 0 K43 K44

⎤
⎥⎥⎦ (27)

{
θ
}

=

⎧⎪⎪⎨
⎪⎪⎩

θ 2b j

θ 2s j

θ 3b j

θ 3s j

⎫⎪⎪⎬
⎪⎪⎭ (28)

Each element of [M] in Eq. (26) and of [K] in Eq. (27) is in fact a sub matrix
defined as follows.

M11 =
(

M2b2b
i j +

1
β

MRI32b2b
i j

)
(29)

M12 = M2b2s
i j (30)

M21 = M2s2b
i j (31)

M22 = M2s2s
i j (32)

M33 =
(

M3b3b
i j +

1
β

MRI23b3b
i j

)
(33)

M34 = M3b3s
i j (34)

M43 = M3s3b
i j (35)

M44 = M3s3s
i j (36)

K11 = γ2
(

KGB2b2b
i j +δKGA2b2b

i j −M2b2b
i j

)
+KB32b2b

i j (37)

K12 = γ2
(

KGB2b2s
i j +δKGA2b2s

i j −M2b2s
i j

)
(38)

K21 = γ2
(

KGB2s2b
i j +δKGA2s2b

i j −M2s2b
i j

)
(39)

K22 = γ2 (KGB2s2s
i j +δKGA2s2s

i j −M2s2s
i j

)
+β ηKS∗2s2s

i j (40)

K33 = γ2
(

KGB3b3b
i j +δKGA3b3b

i j

)
+KB23b3b

i j (41)

K34 = γ2
(

KGB3b3s
i j +δKGA3b3s

i j

)
(42)

K43 = γ2
(

KGB3s3b
i j +δKGA3s3b

i j

)
(43)

K44 = γ2 (KGB3s3s
i j +δKGA3s3s

i j

)
+β ηKS∗3s3s

i j (44)

In the above equations, the Mi j’s and Ki j’s are actual matrices with elements
being defined in Eqs. (17)-(24).
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Numerical Example
A rotating beam with κ = 0.5, δ = 1, η = 0.25, and β = 1E6, is analyzed,

using the approach proposed in the present study. The locus of the four lowest
natural frequencies of a rotating beam is shown in Fig. 1.
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Figure 1: Four lowest natural frequencies (κ = 0.5, δ = 1, η = 0.25, and β = 1E6)

In Fig. 1, veering occurs when γ (angular speed ratio) >2.5 for the first-second
frequencies and γ >15 for the third-fourth frequencies.

References

1. Yoo, H. Ryan R. and Scott R. (1995): "Dynamics of flexible beam undergo-
ing overall motions", J. Sound and Vibration, Vol. 10, pp. 139-148.

2. Yoo, H. H. and hin S. H. S (1998): "Vibration analysis of rotating cantilever
beams" J of Sound and Vibration, Vol. 212, pp. 807-828.

3. Yoo, H. H., Park J. H. and Park J. ( 2001): "Vibration analysis of rotating
pre-twisted blades", Comput. Struct., Vol. 79, pp. 1811-1819.


