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Analysis of Flexible Media Transport Characteristics of
Crown Roller and Its Application to Design
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Summary
Crown rollers are often used in the flexible media transport mechanism consists

of a rubber layered roller and a steel roller. In this paper, the flexible media transport
characteristics of crown roller is investigated theoretically. The purpose of this
study is to analyze the flexible media transport characteristics such as longitudinal
distributionof nip pressure, traction and transport velocity and so on, and to develop
the design method of crown roller that has desired characteristics.

In the first step of this study, a numerical analysis method of the slip and trac-
tion characteristics between a rubber-layered roller and a mated steel roller based
on the Boundary-Element Method was established. Under the assumption of a
plane-strain, Green’s functions of a rubber roller with a rigid core based on polar
coordinates were analytically derived in our method. A contact problem of two
rollers under normal and tangential loading forces was numerically analyzed us-
ing derived Green’s function. Coulomb’s friction law, with a constant coefficient
of friction, and no difference between the adhesion and the sliding coefficient of
friction, was considered in the contact problem. The normal and tangential contact
pressures, strain of rubber surface, nip width and indentation depth were iteratively
calculated so as to satisfy the given normal and tangential loading forces. The
tangential velocity ratio between the two rollers was also calculated for various
parameter values. It was confirmed that the numerical results agree well with the
experimental ones.

In the second step of this study, an analytical approach that can estimate flexible
media transfer characteristics of crown rollers was developed. In the analysis, two
types of crown rollers, i.e. a rubber roller with crown shape in its internal diameter
and a steel roller with crown shape in its diameter, were examined. And based
on analysis results, a design approach of crown shape which can realize uniform
longitudinal distribution of nip pressure was proposed. Designed crown rollers
were fabricated and the performances of them were confirmed with experiment.

Introduction
For the flexible media transport mechanism composed of long rollers, it is very

important to uniform longitudinal distribution of the nip pressure, traction, trans-
port velocity, and so on. The deviation of longitudinal distribution of nip pressure
is mainly subjected to the deflection of the roller shaft. Lots of methods that can
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reduce the deviation have been developed and used practically. One of the meth-
ods involves a technique to change the diameter of the roller along the longitudinal
axis, namely crown roller or crowning roller. Dimensions of the crown roller are
designed experientially, because theoretical design method has not been revealed
yet. Purpose of this study is to develop the analytical method of flexible media
transport characteristics of crown roller and establish the theoretical design method
of the crown roller.

Some researchers have been focused on a contact problem in a flexible me-
dia feeding mechanism. Soong and Li[8] considered a sheet in the nip of two
cylinders and calculated pressure distribution for a normal load. In order to obtain
traction characteristics of a feeding mechanism analytically, normal and tangen-
tial load should be considered. Soong and Li[9] proposed an analytical technique
to calculate the traction characteristic between a rubber-layered roller and paper.
They assumed a general stress function by the Fourier series in polar coordinates.
In a nominal contact problem, their collocation method calculates the normal and
tangential pressures at a contact area, tangential velocity ratios of two rollers and
paper. Kalker[10] proposed a numerical algorithm to solve a rolling contact prob-
lem of viscoelastic multilayered cylinders with dry friction based on Bentall and
Johnson[5]. Recently, this problem is focused upon and discussed in a research
working group of the Japan Society for Precision Engineering. Wu et al. [11] inves-
tigated the traction characteristics of a paper and rollers experimentally. Okamoto
et al.[12] analyzed the same problem by using a commercial FEM software and
investigated the effects of friction, non-linearity of elastic modulus and large de-
formation, stress relaxation, rotating speed and the edge effect of a short roller as
well as a normal and tangential load, and showed the validity and usefulness of the
numerical analysis by experiment for short rollers. However, considering the fact
that the actual feeding rollers in printers and copiers are longer than 200mm, it is
almost impossible to numerically analyze the effect of a non-uniform nip load and
skewed angle of such long feeding rollers by FEM.

Accordingly, in the first step of this paper a numerical analysis of the slip and
traction characteristics between a rubber-layered roller and a mated rigid roller
based on the Boundary-Element Method is presented. In order to investigate the
basic contact characteristics of a rubber roller, the situation of no flexible madia
between the two rollers is considered. The Green’s function of a rubber-layered
roller based on polar coordinates is obtained under the plane-strain condition, and
then by using this Green’s function, the relation of load force and penetration depth
of the two rollers is calculated. The validity of the calculated results are shown by
the experimental results.

In the second step, the crown roller is investigated based on the results of the
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first step. Long rollers whose shaft deflection cannot be ignored have the longitu-
dinal distribution of the nip pressure. In this case, the rubber deformation is three-
dimentional but it can be modeled with two-dimensional contact mentioned before
because the out-of-plane strain is much smaller than the plane strain. Thus, an an-
alytical method that is based on the results of the two-dimensional contact analysis
and can estimate the longitudinal distribution of nip pressure of the long rollers
is developed. The analytical method is applied to a design method of the crown
shape that can realize uniform longitudinal distribution of nip pressure. Two types
of crown rollers i.e. a rubber roller with crown shape in its internal diameter and a
steel roller with crown shape in its diameterare, defined and design procedures of
these rollers are shown. Dsigned crown rollers are fabricated and the performances
of them are confirmed with experiment.

Green’s Function Derivation
Basic Equation and General Solution

Figure 1 depicts an analytical model of a rubber-layered steel roller and a mated
steel roller. The rubber is deformed by contact with the mated steel roller. Because
Young’s modulus of steel is larger than 105 times of that of rubber, the deformation
of steel parts is ignored. Uniform contact along the axial direction of the rollers is
assumed in this analysis and only the deformation of rubber in a section is consid-
ered under the assumption of the plane-strain.

Figure 1: Analitical model of a rubber
roller

Figure 2: Infinitely small element and
stress
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Figure 2 shows an infinitely small element and definition of stress. The equi-
librium equations of stress are given by
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By substituting Hooke’s Law into stress σr and τrθ , these equations are repre-
sented by normal and tangential deformation u,v.
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where E and ν are a Young’s modulus and Poisson’s ratio of rubber, respectively.
Notation κ and β are constants related to ν as follows: κ = 1−ν2, β = ν(1+ν).

In order to solve these partial differential equations, Eqs.(3) and (4), u and v as
two Fourier series are defined as followings,

u ≡ G0(r)+
∞

∑
k=1

Gck(r) coskθ +
∞

∑
k=1

Gsk(r) sinkθ (5)

v ≡ K0(r)+
∞

∑
k=1

Kck(r) coskθ +
∞

∑
k=1

Ksk(r) sinkθ (6)

Notation k represents number of harmonics. After substituting Eqs.(5) and (6)
into Eqs.(3) and (4), an independent variable r is transformed into a new vari-
able t with r = et in order to obtain six ordinary differential equations related with
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G0(t),K0(t),Gck(t),Gsk(t),Kck(t), Ksk(t).(
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The notation α is defined as

α =
κ2 −β 2

2(1+ν)
.

By solving Eqs.(7), general solutions of G0(t) and K0(t) are obtained as follows:

G0(t) = CG01et +CG02e−t

K0(t) = CK01et +CK02e−t

}
, (9)

where CG01,CG02,CK01 and CK02 are constants calculated from boundary condi-
tions. Eq.(8) is rather complex to be solved. Primarily, four eigen values of Eqs.(8)
are calculated as

λk1 ∼ λk4 = k +1, −k−1, k−1, −k +1. (10)

Considering λ13 = λ14 = 0 for k = 1, the general solutions of Gc1(t),Gs1(t),Kc1(t),
Ks1(t) of the forms are obtained.
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where
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And general solutions of Gck(t),Gsk(t),Kck(t) and Ksk(t) for k = 2,3, . . . are derived
as follows:
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And Ak j and Bk j (k = 1,2, . . .; j = 1 ∼ 4) are also constants calculated from the
boundary conditions.

Boundary Conditions at the Inner Radius
The boundary conditions at the inner radius of the rubber roller, Rin, are u(Rin,θ ) =

v(Rin,θ ) = 0. Subsequently, the following equations are obtained

G0(lnRin) = K0(lnRin) = 0 (15)

Gck(lnRin) = Gsk(lnRin) = 0

Kck(lnRin) = Ksk(lnRin) = 0

}
(k = 1,2, · · ·) (16)

Boundary Conditions at the Outer Radius
The boundary conditions at the outer radius of the rubber roller, Rout, are ex-

pressed by two sets of Fourier series for two loading conditions.
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First, for the normal unit force, the boundary conditions are :
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where δ (θ ) is the Dirac’s δ function.

Second, for the tangential unit force, the boundary conditions are :
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Solutions of the Green’s Function
The boundary conditions at the outer radius, shown in Eqs.(17), (20), are ex-

pressed not by deformations but by stresses. However, these stresses are theoreti-
cally related to deformations.
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By substituting Eqs.(5) and (6) to Eqs.(21) and (22) and considering the harmonic
balance with the boundary conditions of Eqs.(17) and (18) or Eqs.(19) and (20), we
obtain the equations of the Fourier coefficients in Eqs.(5) and (6). Ensuingly, it is
finally determined that the Fourier coefficients by using the boundary conditions at
the inner radius in Eqs.(15) and (16).

Contact Problem
In this section, the way to solve contact problem is shown.

Analytical Model and Assumption
Figure 3 depicts an analytical model of a flexible media transport mechanism

consisted of a rubber-layered steel roller and a steel roller. The rubber is deformed
by contact with the paper supported by the steel roller. Because Young’s modulus
of steel is larger than 105 times of that of rubber, the deformation of steel parts is
ignored. O−XZ is a Cartesian coordinate system whose origin is set on an un-
deformed surface of the rubber. The coordinates, o− rθ , denote polar coordinates
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whose origin is the center of the rubber roller. The rotation direction of each roller
has been shown in the figure. Negative and positive X corresponds to the inlet and
outlet of rotation, respectively.

Figure 3: Contact model

In the previous section, Green’s functions of the cylindrical rubber were de-
rived analytically under the plane strain assumption. In this section, the following
assumptions are further considered.

• Bending stiffness of the flexible media and deformations of the flexible media
in the nip can be ignored.

• Tension T works on the flexible media directory and no break torque works
on the steel roller.

In this section, contact normal and tangential pressure distributions, stick and
slip area, strain of the rubber surface against the normal force F and the tension T
are calculated. The rigid core of the rubber roller is fixed in space but rotatory. The
steel roller can move along the Z-axis and the penetration depth is δZ(> 0). The
tension of the paper −T is acting on the rubber surface so that a point on the free
rubber surface at X = 0 moves to X = δX < 0. The contact area is represented by
angle, −b ≤ θ ≤ a. In the inlet region, the rubber sticks to the steel surface and the
constant strain εθ maintained along the θ -axis in the stick area because no slippage
occurs in the stick area.

Deformation of the Rubber Surface due to Normal and Tangential Pressure
Assume that the point of application of force is θ and the point of observa-

tion of deformation is ψ , then Up(ψ) and Vp(ψ) denote the normal and tangential
deformation due to a normal pressure p(θ ), respectively. Also, Uq(ψ) and Vq(ψ)
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denote the normal and tangential deformation due to a tangential pressure q(θ ),
respectively. These deformations are represented in the following equations using
Green’s functions.

Up(ψ) =
∫ a

−b
up(Rout,ψ −θ ) p(θ )Rout dθ (23)

Vp(ψ) =
∫ a

−b
vp(Rout,ψ −θ ) p(θ )Rout dθ (24)

Uq(ψ) =
∫ a

−b
uq(Rout,ψ −θ ) q(θ )Rout dθ (25)

Vq(ψ) =
∫ a

−b
vq(Rout,ψ −θ ) q(θ )Rout dθ (26)

We assume the linear elastic deformation in this analysis because the nonlinear
deformation should not be utilized in the actual mechanism from the viewpoint of
durability of the rubber roller.

Formulation of Contact Analysis
The condition equations of deformation, normal pressure, tangential pressure

and boundary of the contact area, are shown in this subsection.

R out

R in

 

 

  ψ

ψ

R s
s

+(Rs+Tp)(1-cosψs)+Rs(1-cosψs)
Rout(1-cosψ)

Figure 4: Initial gap

A steel roller whose outer radius is Rs is considered. The initial gap of the
direction of Z is defined as shown in Fig.4. A deformation condition of the direction
of Z was derived.

−{Up(ψ)+Uq(ψ)}cosψ +{Vp(ψ)+Vq(ψ)}sinψ

= δZ −Rout(1−cosψ)−Rs(1−cosψs)+εθ Rout ψ sinψ , (27)
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where Up,Vp,Uq,Vq are deformations on the rubber surface given by Eqs.(23)∼(26).
And ψs is defined as the following equation.

ψs = sin−1
{

Rout

Rs
sinψ

}
(28)

A deformation condition of the direction of X should be considered in the stick
area. Coulomb’s frictional low, with a constant coefficient of friction, μ , and no dif-
ference between the adhesion and the sliding coefficient of friction between the pa-
per and the rubber surface is assumed. The absolute value of the tangential pressure
q doesn’t exceed μ p in the stick area and a deformation condition of the direction
of X is given,

{Up(ψ)+Uq(ψ)}sinψ +{Vp(ψ)+Vq(ψ)}cosψ

= δX +εθ Rout ψ cosψ . (29)

On the other hand, in the slip area, an alternative condition equation should be
considered.

|q(θ )|= μ |p(θ )| (30)

From the equilibrium conditions of normal and tangential pressure, the normal
and tangential loading forces are given by

F =
∫ a

−b
{−p(θ )cosθ +q(θ ) sinθ}Rout dθ , (31)

T =
∫ a

−b
{p(θ ) sinθ +q(θ )cosθ}Rout dθ . (32)

Boundary conditions of the contact area are given as follows.

p(−b) = p(a) = 0 , q(−b) = q(a) = 0 (33)

In the calculation procedure, normal and tangential pressures, p and q, are
defined on 50 points in the contact area and p, q, δZ , δX , εθ , a and b are iteratively
calculated by using Eqs.(27), (33).

Calculated Result
Calculated results of the relation of load force and penetration depth are mainly

discussed below.

The examples of the relation of load force and penetration depth obtained by
theoretical analysis are shown in Fig.5. In the calculation, the outer radius of each
roller is 15mm, Young’s Modulus of rubber are 5.57MPa and 1.35MPa, Poisson’s
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ratio of rubber ν is 0.49, friction coefficients μ is 0.5 and the normal loading force
F is changed from 100 to 700N/m. In all calculation, tangential loading force T
is 0. In this calculation, Young’s Modulus of rubber Er, rubber thickness Tr, load
force F were chosen as variable parameters.
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Figure 5: Nonlinear spring characteristics of rubber roller

Weight

Driven

Velocity
control

Rubber
Roller

Steel
Roller

Figure 6: Experimental setup of short roller

It is found from Fig.5 that the thinner the rubber is the harder the rubber roller
behaves. And, each plot can well approximate with quadratic function that throughs
origin. For example, the case of Tr = 5.5mm, Er = 5.57MPa, approximate quadratic
function is

F = 3.424×106δz +1.253×1010δ 2
z .
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Preliminary Experiment and Discussion
Experimental Apparatus and Conditions

In order to confirm the validity of our calculated results, an experimental setup
shown in Fig.6 was prepared. The radius and length of each roller is 15mm and
40mm, respectively. The bearing span of rollers is 55mm. The steel roller is a
drive roller that is actuated by a motor with a velocity controller. The rubber roller
is a driven roller that rotates freely and is supported in a vertical plane with guide
shafts. The normal loading force is given to the rollers by weights and decides
the penetration depth. In order to obtain the relation of load force and penetration
depth, the normal loading force F was changed from 100 to 700N/m. The pen-
etration depth was measured as the displacement of rubber roller unit by a CCD
camera and monitor. All experiments were performed with rotational speed of the
steel roller of 10rpm.

Six silicon rubber rollers are prepared for experiments. The thickness of rub-
bers are 3.0mm,5.5mm and 8.0mm. The hardness of the rubbers are s =70 Hs and
s =30 Hs and the value of Young’s Modulus was calculated from the hardness with
Gent’s equation[14].

E(MPa) = 9.8×10−2 s+7.31
0.0456(100− s)

(34)

Comparison Between Calculated and Experimental Results
Figure 7 indicates the relation of load force and penetration depth obtained

experimentally. Eight experiments were achieved for one loading condition and the
maximum, average and minimum values are shown in the figures. It is noted that
the calculation results agree well with experimental ones.

Analysis of the Longitudinal Distribution of the Nip Pressure
Long rollers whose shaft deflection cannot be ignored have the longitudinal

distribution of the nip pressure as shown in Fig.8. In this case, the rubber defor-
mation is three-dimentional but it can be modeled with two-dimensional contact
mentioned before because the out-of-plane strain is much smaller than the plane
strain. In this section, an analytical method that is based on the results of the two-
dimensional contact analysis and can estimate the longitudinal distribution of nip
pressure of the long rollers is developed.

Two-dimensional model of rubber deformation leads a simple model with par-
allel independent nonlinear springs shown in Fig.9. The nonlinear characteristics
of springs were obtained in the two-demensional analysis shown in Section . The
static deformation of the rubber roller shaft zr(y) should be considered in the anal-
ysis of the longitudinal distribution of the nip pressure. When the longitudinal
distribution of the nip pressure F(y) is given, zr(y) is calculated from the following
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Figure 7: Experimental results of relation of load force and penetration depth

equation.

EsIs
d4zr(y)

dy4 = F(y), (35)

where Es and Is = (πR4
c)/4 are an elastic modulas and the second moment of area

of the rubber roller shaft, respectivelly.

On the other hand, the static defromation of the steel roller was ignored in
the analysis, because it is thicker than the rubber roller shaft. In the calculation
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procedure, the stiffness of the rubber roller shaft can be calculated from Eq.(35) by
FEM and utilized with nonlinear stiffness of rubber.

Examples of calculated longitudinal distribution of the nip pressure of straight
rollers were shown in Fig.10. Load force acting on each side was assumed to be
58.8N in these calculations. More than 10% deviation of the longitudinal distribu-
tion of the nip pressure is observed even in the bast case of the examples.

Crown Design
In this section, the way to uniform the longitudinal distribution of nip pressure

using crown roller is shown.

A crown roller generally means a steel roller with crown shape in its diameter.
However, other types of crown rollers, i.e. a rubber roller with crown shape in its
inner or outer diameter were able to assumed. Because it is difficult to fabricate
rubber with high accuracy, a rubber roller with crown shape in its outer diameter
was ignored. Thus, two types of crown roller were discussed. The dimensions of
each type of crown roller were calculated with a computer program whose flow
chart is shown in Fig.11.

Start

End

Yes

No

Figure 11: Flow chart of crown calculation

Crown of Steel Roller
In this subsection, design procedure of crowned steel roller is shown.

From the two-dimensional analysis, nonlinear spring characteristics of the rub-
ber roller is derived as

F(y) = b1δz(y)+b2δz(y)2 (36)
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Notations b1 and b2 were resulting coefficients derived from nonlinear spring char-
acteristics of the rubber roller. From this equation, the following equation is ob-
tained.

δz(y) =
−b1 +

√
b2

1 +4b2F(y)

2b2
(37)

In the case of straight rollers, each position of the rubber surface should move
a constant distance by contact. The rubber roller shaft deflection is a function of
y, then the penetration depth of rubber roller should be a function of y. This is
the reason of the nonuniform longitudinal distribution of nip pressure. In order to
obtain uniform longitudinal distribution of nip pressure, constant penetration depth
of rubber roller required. In the design procedure, a reference penetration depth is
chosen and the diameter of the steel roller at y, Rs(y), is changed iteratively so that
the penetration depth at y coincides with that of the reference point yr.

Rs(y)new = Rs(y)old −δz(y)+δz(yr) (38)

 0.0147

 0.0148

 0.0149

 0.015

 0.0151

 0  0.06  0.12  0.18  0.24

Rs
 [m

]

 [m]

3mm
5.5mm

8mm

Figure 12: Example of crown shape of
steel roller

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0  0.06  0.12  0.18  0.24

R 
   

[m
]

y [m]

30Hs 8mm
30Hs 3mm
70Hs 8mm
70Hs 3mm

in

Figure 13: Example of crown shape of
rubber roller shaft

Figure 12 shows an example of crown shape derived from calculation. The
crown shape actually agrees with the rubber roller shaft deflection loaded static
uniform load force. It is found from Fig.12, calculated crown height Rsmax−Rsmin

is less than 20μm. Thus, it can be concluded that uniform longitudinal distribution
of nip pressure is hardly achieved practically with the crowned steel roller.

Crown of Rubber Roller
In this subsection, design procedure of crowned rubber roller shaft is shown.

Thinner rubber has harder spring characteristics. Using this property, longitu-
dinal distribution of nip pressure could be uniformed. Thus, the rubber should be
thickened where load force is strong, or be thinned where load force is weak.
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As mentioned before, the rubber roller has nonlinear spring characteristics
shown in Eq.(36). And the coefficients of b1 and b2 in this equation are functions
of the inner radius of the rubber roller. These coefficients were obtained for var-
ious inner radius by two-dimensional analysis and derived interpolation functions
of them.

bk(r) =
B+1

∑
j=1

Ck jR
j−1
in (k = 1,2), (39)

where Rin is a radius of the rubber roller shaft and B is the number of calculated
case. Thus,

F(y) = b1(y)δz(y)+b2(y)δz(y)2

=
B+1

∑
j=1

δz(y)
{

C1 j +δz(y)C2 j
}

Rin(y) j−1 (40)

From this equation, the radius of the rubber roller shaft at y that gives the same
nip pressure with that of the reference point yr was callculated iterativelly by the
following equation.

Rin(y)new =
F(yr)−F(y)

F ′(y)
+Rin(y)old (41)

where

F ′(y) =
B+1

∑
j=1

( j−1)δz(y)
{

C1 j +δz(y)C2 j
}

Rin(y) j−2
old

Examples of crown shape of the rubber roller shaft are shown in Fig.13. In
these cases, the roller end was chosen as the reference position. Even in the case
of soft and thin rubber, the calculated crown height Rinmax−Rinmin is about 300μm.
It can be concluded that uniform longitudinal distribution of nip pressure will be
achieved practically with the crowned rubber roller shaft.

Experiment and Discussion
In this section, the experiment of crowned rubber roller shaft is shown.

Experimental Apparatus and Conditions
Only one type crown rollers were fabricated that were rubber rollers with crown

shape in its internal diameter. One of crown rollers proparties are 70Hs hardness
rubber, the thickness of rubber is 3mm at the edge of roller. Those of the other
one are 30Hs hardness rubber, the thickness of rubber is 3mm at the edge of roller.
These rollers were designed for 58.8N loading force for each side of rollers.

In order to confirm the validity of our calculated results, an experimental setup
shown in Fig.14 was prepared. To measure the longitudinal distribution of nip
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Figure 14: Test bench of Crown roller
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Figure 15: Experimental result of longitudinal distribution of nip pressure of crown
roller

pressure, pressure measuring film called PRESCALE was used. The loading force
is 58.8N for each side of rollers. Crown roller is drived by servo motor of 10rpm.
Straight steel roller rotates freely.

Comparison Between Calculated and Experimental Results
Because of PRESCALE characteristics, measured pressure is very noisy. So

the average of pressure of its driving direction is derived from measured data. And
PRESCALE can’t measure precise puressure, the averaged pressure was normal-
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ized with its maximum value. The result of these calculation of experimental data is
called normalized pressure distribution. If longitudinal distribution of nip pressure
is uniformed, normalized pressure distribution is flat and its value is 1.

Figure 15 shows examples of the experimental results. Compared to the cal-
culation results of normalized pressure distribution of straignt rollers, our crown
roller gives well uniformed pressure distribution.

Table 1: Roller demensions
������

a b c

L[mm] 7 93 240
R[mm] 5 7 9.5

Conclusion
In this paper, firstly, two-dimensional contact problem was solved theoretically

with Green’s functions of a rubber roller with a rigid core. And the relation of load
force and penetration depth was obtained experimentally and theoretical results
were confirmed by experimental results.

Secondly, the way to obtain crown shape that can uniform longitudinal dostri-
bution of nip pressure was shown. In this design procedure, the results of two-
dimensional contact problem was utilized. Experimental results were also com-
pared with theoretical ones and discussed.

The results of this study are summarized as follows:

1. The way to obtain Green’s function was shown.

2. The way to solve two-dimentional contact problem was shown.

3. Calculated results were confirmed with experiments of the relation of load
force and penetration depth.

4. The method to obtain the londitudinal pressure distribution of nip pressure
of a long rollers was revailed.

5. The dedign procedure to obtain crown shape based on the calculated relation
of load force and penetration depth was shown.

6. Designed crown rollers were fabricated and the performances of them were
confirmed with experiment.
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