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Summary
A priori information is discussed in order to overcome the ill-posedness of

damage detection. We compared Gauss and Laplace distributions to express the
uncertainties of a priori information. Uncertainty level of a priori and observation
information is related to the balance of a priori and observation terms in the ob-
jective function. Maximum likelihood method is used to determine the balance
adaptively. The method is examined through numerical simulations of identifica-
tion problem to detect damage of a bridge based on coupling vibration with moving
vehicles.

Introduction
An effective maintenance of infra-structures is indispensable in infra-manage-

ment in Japan. A basic study was performed to examine the possibility of detecting
damage of a bridge based on vibration induced by a moving vehicle (Yoshida et
al. 2006). Damage detection problem can be interpreted as an inverse problem, of
which ill-posedness is a known difficulty. It is basically caused by lack of informa-
tion compared with the size of the solution space. Many regularization methods,
which are techniques to overcome the problem of ill-posedness, can be interpreted
as adding information, which is known as a priori information. It corresponds to
a regularization or penalty term of the objective function of the inverse problem.
It is common practice to use residual sum of squares of the empirical value of the
unknown parameter. From a probabilistic interpretation, the square means that the
error of the empirical value is assumed to follow a Gaussian distribution. If we
assume Laplace distribution instead, then a residual sum of absolute differences
instead of square of the differences should be used.

In this paper, a regularization method is introduced for the damage detection
problem of a bridge with vibration induced by a moving vehicle. A formulation is
proposed to estimate uncertainty level of the a priori and a posterioi information,
in addition to unknown parameters, using maximum likelihood method. Gaussian
or Laplace distribution is used for the uncertainty of a priori information. The
approach is examined through numerical simulations of the damage detection with
coupled vibration of a bridge with a moving vehicle.

Numerical simulation of damage detection of a bridge
Inverse problems can be interpreted from two parts, 1)definition of objective

function, 2)minimization of the objective function. Most important issue is how to
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define the objective function. Once objective function is defined, well-known ex-
isting optimization algorithms can be applied. In this study, DFP method is applied
to minimize the objective function.

The objective function with Gaussian type a priori information is introduced
briefly, because details of the derivation are stated in several papers, for example,
Jackson & Matsu’ura (1985), Hoshiya & Yoshida (1996). We assume that the mean
vector and the variance-covariance matrix of unknown parameters xxx are given as a
priori information.

x̄xx = E[xxx], MMM = E[(xxx− x̄xx)(xxx− x̄xx)T ] (1)

Observation vector zzz is given as,

zzz = HHH(xxx)+vvv (2)

The vector vvv denotes observation error, RRR = E[vvvvvvT ] is variance-covariance ma-
trix of the error. The following objective function is derived by Maximum Likeli-
hood method, assuming the a priori information is a part of the observation.

J = (xxx− x̄xx)T MMM−1(xxx− x̄xx)+(zzz−HHH(xxx))T RRR−1(zzz−HHH(xxx))
+ ln |MMM|+ ln |RRR|+(n+m) ln(2π) (3)

where n = number of unknown parameter; m= number of observation data. When
uncertainty of unknown parameter and observation error are independent and iden-
tical as shown in Equation (4), the objective function is expressed in Equation (5).

MMM = σ2
MMMIII, RRR = σ2

RIII (4)
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In the above objective function, independent identical Gaussian distributions given
in Equation (6) are assumed for the a priori information.
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where xi, x̄i = i-th component of vector (xxx, x̄xx = unknown parameter vector and ex-
pectation of the vector). When Laplace distribution is assumed instead of Gaussian
distribution for a priori information, probability density function of the a priori
information is,
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The following objective function is derived in the same way with Laplace type a
priori information.

J = 2n ln(2b)+
2
b

n

∑
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|xi − x̄i|+m ln(2π)+2m lnσR +
1

σ2
R

m

∑
i=1

(zi −hi(xxx))2 (8)

Numerical simulation of damage detection of a bridge
A bridge vibrates due to a moving vehicle on the bridge. A method to simulate

the coupled vibration is proposed and discussed in Kawatani et al. 2000, Kim et
al. 2005. The acceleration and/or displacement time histories due to the moving
vehicle are supposed to be recorded at several points of a bridge. The stiffness
distribution of the bridge is identified from observed data. The part where the
estimated stiffness is small, is considered as damaged. The regularization technique
is studied with this damage detection problem. The technique discussed in this
paper is, however, applicable to general inverse problems.

The formulation of the coupling vibration is briefly introduced. The motion of
a bridge and vehicle is described by the following equation.[

MMMbb 0
0 MMMvv

]{
D̈(t)
δ̈ (t)

}
+
[

Cbb(t) Cbv(t)
Cvb(t) Cvv

]{
Ḋ(t)
δ̇ (t)

}
+
[

Kbb(t) Kbv(t)
Kvb(t) Kvv

]{
D(t)
δ (t)

}

=
{

fbb(t)
fvv(t)

}
(9)

Subscripts b, v and bv denote terms related to the bridge, vehicle and bridge-vehicle
interaction respectively. CCCbv(t) and KKKbv(t) are coupled damping and stiffness ma-
trices between bridge and vehicle systems. MMMvv, CCCvv and KKKvv are mass, damping
and stiffness matrices for the vehicle. fff bb(t) and fff vv(t) indicates external moving
vehicular loadings on the bridge and dynamic wheel loads of the vehicle respec-
tively. The simultaneous differential equation is solved by Newmark’s β method in
the following numerical examples.

A bridge model for the numerical simulation is shown in Figure 1. When a ve-
hicle moves on a lane of the bridge, the dynamic response of the bridge is observed
at several points. The detailed data of the model such as roadway surface roughness
data is shown in Kim & Kawatani (2007). The bending stiffness of an element of
the bridge is assumed to decrease at the damaged point. Damage index is defined
to be the ratio of the damaged stiffness to undamaged stiffness. For example, when
stiffness of an element decreases to 70%, the damage index of the element is 0.7.

Unknown parameter vector xxx in Equation (1) to (9) is the damage index vec-
tor. There are 16 elements in the model, of which damage indices are unknown
parameters xxx. zzz and HHH(xxx) are respectively observation data and response data cal-
culated by Equation (9). The observation points are node number 4, 8 and 12. RRR
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Figure 1: A bridge model for numerical simulation

is assumed to be an identity matrix, which means that observation error is identical
and independent of each other. In this study, DFP method is applied to minimize
the objective function.

Identification of initial model
It is important to estimate stiffness distribution of initial model without damage

because the damage index is defined as the ratio of the damaged stiffness to the un-
damaged stiffness or initial stiffness. It is also important for good damage detection
to estimate initial stiffness distribution since there are several uncertainties such as
material randomness and construction error that are present.

Assumed initial stiffness distribution is shown by the line denoted "true" in Fig-
ure 2. The vertical axis expresses the ratio
to nominal stiffness. The axis title should
be called correction coefficient rather than
damage index, however, same axis title is
used to be consistent with the figures be-
low. Response induced by a moving vehi-
cle is calculated using the stiffness distri-
bution and then response data at the ob-
servation points are obtained, which are
subsequently used as observation data in

True

Without

Figure 2: Estimation of initial model

damage detection simulations. Three cases are performed, without a priori infor-
mation, with Gaussian type and Laplace type a priori information. When Gaussian
type a priori information is used, the objective function of Equation (5) is mini-
mized with respect to damage indices xxx, standard deviation of a priori information
and observation error. In the case of Laplace type a priori information, the objec-
tive function of Equation (8) is used. Parameter b is estimated instead of standard
deviation. Mean value of damage index in a priori information is assumed to be
1.0.

The estimated distributions are also shown in Figure 2. The distribution esti-
mated without a priori information is fluctuating and different from that of the true
distribution. The damage indices estimated with Laplace type a priori information
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is close to 1.0, and also different from that of the true distribution. The distribu-
tion estimated with Gaussian a priori information is almost the same as that of true
model. It is suggested that when the distribution is smooth, Gaussian type a priori
information has an advantage in the identification problem.

True  

Without  

Figure 3: Damage detection of one
damaged points model

True 

Without  

Figure 4: Damage detection of two
damage Points model

Damage detection
The position and level of the damage are estimated in damage detection. The

damaged point is assumed to be Element 6, and its damage index is 0.7. Three
cases of simulation, without a priori information, with Gaussian type and Laplace
type a priori information, are also performed. The estimated distributions are
shown in Figure 3. Though all cases indicate small damage index around Ele-
ment 6, the distribution estimated without
a priori information has some fluctuations.
The case with Gauss type a priori informa-
tion shows better agreement with the true
distribution,however still some estimation
errors are observed. On the other hand, the
case with Laplace type shows very good
agreement. It is suggested that Laplace
type a priori information has advantage in
identification problem when only a spe-

True  

Without  

Figure 5: Damage detection of three damage
points model

cific part is damaged.

Damage detection simulation is performed in same way for the case with two
damaged points, element number 3 and 6. The estimated distributions are shown in
Figure 4. Gauss and Laplace type simulation shows almost similar agreement level.
Figure 5 shows the estimated distribution when damages are assumed at element 3,
6 and 8. The agreement is not good in all cases for the model with three damaged
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points.

Conclusion
A regularization method with a priori information is introduced for the damage

detection problem of a bridge with vibration induced by a moving vehicle. We
compared Gauss and Laplace distributions to express the uncertainties of a priori
information. Gaussian type a priori information gives us more stable result than
Laplace type when the distribution of unknown parameters is smooth. Laplace
type is, however, better when limited parts are damaged.
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