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Summary

The thermo-acoustic oscillation (Taconis oscillation) in a closed long tube with large
thermal gradient is studied by numerical simulation of the 2D compressible Navier-Stokes
equations. Both ends of tube are hot (T = TH), and the center of side wall is cold (T =
TC). We analyze the thermo-acoustic fields in the closed tube with different temperature
ratiosθ = TH/TC. When the oscillation is observed, the time averaged pressurepm and
the pressure amplitudepamp are almost constant in any tube cross section. On the other
hand, the time averaged temperatureTm is not homogenous in the central cold region. The
thermal boundary layer in the cold region may have a important role. We also observe two
steady states between the temperature ratio 6.2 < θ < 6.5.

Introduction

Spontaneous oscillations of a gas column are frequently observed in a long tube when
there is a nonuniform temperature distribution along the axis of the tube. It has been re-
ported that the oscillation occurred in the pumping line from a liquid helium reservoir to
a room temperature system. Taconis et al. [1] studied this oscillation in a gas-filled tube
connected with a liquid helium reservoir. Thus these oscillations are called “Taconis oscil-
lation”.

Theoretical studies of Taconis oscillations have been developed by Kramers [2] and
Rott [3]. Kramers assumed that the thickness of viscous boundary layer on the tube wall
was sufficiently small compared with the tube radius. He obtained the critical temperature
ratio θcri over which a steady standing wave could exist. However, this temperature ratio
θcri was extremely higher than that of the experimental results of helium gas. Rott analyzed
Taconis oscillations in a 2D rectangular tube or in an axisymmetric tube with a closed hot
end and an open cold end. He took into account a finite viscous boundary layer thickness
and the material property of helium gas. He successfully obtained the critical temperature
ratioθcri in a circular tube compared with the experiment. It is also shown in his paper that
the value of the critical ratio of a 2D rectangular tube is not largely different from that of
an axisymmetric tube.

Yazaki et al. investigated the pressure development of Taconis oscillations in the closed
circular tubes experimentally [4]. In this experiment, both ends were closed and hot, and
the central region of side walls was cold. They observed standing waves in the different
geometrical and physical situations. They reported that the critical temperature ratioθcri

in these experiments agreed with that by the theoretical analysis of Rott though the the
experimental situation was different from theoretical one. It is difficult to observe the fluid
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flow in the tube experimentally. The research of Taconis oscillations in such a long tube
has not been studied by numerical simulation. The purpose of this research is the numerical
investigation of the dynamics of Taconis oscillation which occurs in the long tube similar
to the experiment of Yazaki et al.

Formulation of problem

The fluid flow in a closed long tube is considered. For simplicity, we assumed that it is
the two-dimensional rectangular tube in Fig.1(a). The fluid in the tube is gaseous helium.
The basic equations are the 2D compressible Navier-Stokes equations of a perfect gas. The
conservative form of the equations is
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whereqqq = (ρ,ρu,ρv,e), ρ is the density,u andv are the velocity components in thex and
y directions, ande is the total energy density, respectively. The specific heat ratioγ is 5/3
and the Prandtl number is 0.68. The viscosity and the thermal conductivity are determined
by using the Sutherland law.

The wall temperatures of both ends are the room temperatureTH = 300K and the wall
temperature of the central region isTC (< TH). The wall temperature distribution is shown
in Fig.1(b). We calculated the several temperature ratiosθ = TH/TC between 5< θ < 12.
Since the tube is very narrow, we assume that flows are symmetric to the central axis of the
tube. The tube lengthl is 28cm, the half of the tube widthw is 0.7mm, and the length of
temperature gradient∆l is 7.5mm.

(a) 2D rectangular tube 

Closed tube

(b) Wall temperature distribution       

Figure 1: (a) Schematic of the 2D closed tube. (b) Wall temperature distribution.

Numerical method

To solve the basic equations, we employ the block pentadiagonal matrix scheme [5].
Time advancement is by the second-order accurate three-point backward implicit scheme.
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The convective terms are evaluated by using fourth-order central differencing and the vis-
cous terms are evaluated by using second-order central differencing. The boundary condi-
tions on the wall are non-slip, isothermal, and no pressure gradient in the normal direction
of the wall. The initial state of the fluid is quiescent,T = TH, and p = p0, wherep0 is
the atmosphere pressure. The physical quantities are normalized by the tube lengthl , the
densityρ0, the acoustic velocitya0 atT = TH andp = p0 respectively.

Results

When the temperature ratioθ is equal to 9.09, the steady oscillation is observed in the
tube. The pressure fields atta = 978.6 andtb = 981.8 are shown in Fig.2 whenθ = 9.09.
The time differencetb − ta is almost half of the resonant period. The tube walls are on
x/l = 0.0,1.0 andy/l = 0.0. The central axis of the tube, that is, symmetrical boundary is
on y/l = 2.5×10−3. The pressure is low at the left end and high at the right end in Fig.2
(a), while the pressure is high at the left end and low at the right end in Fig.2 (b). It is noted
that the value of the time averaged pressure is homogenous in the tube and the pressure is
constant along the vertical line (x =constant) . The antinode of pressure oscillation exists
at the both ends of the tube and the node exists at the center. The mode of this oscillation
is a primary mode in the tube.

Figure 2: Pressure field in the tube. (a) timeta = 978.6, (b) timetb = 981.8 at
θ = 9.09. The time difference between (a) and (b) is almost half of the resonant
period.

The time averaged temperature fields are shown in Fig.3. The temperature is time
averaged over 10 periods of the primary oscillation. The time averaged temperature is
not homogeneous along the vertical line in 0.1 < x/l < 0.9. The thickness of the thermal
boundary layer in the hot regionδαH is δαH ≈ 2×10−3 = 0.8w/l at θ = 9.09, and that in
the central cold regionδαC is δαC ≈ 5×10−4 = 0.2w/l .

In order to study the dependency of the oscillation amplitude on the temperature ratio
θ, θ is decreased from the oscillation state (A) atθ = 9.09 (TH = 300H is fixed andTC is
increased ). The steady oscillations are observed atθ ≥ 5.88 and the quiescent states in the
tube are obtained atθ ≤ 5.7. On the other hand, whenθ is increased from the quiescent
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Figure 3: The time averaged temperature distribution atθ = 9.09.

state (B) atθ = 5.7, we obtain the steady oscillations atθ ≥ 7.14. The oscillation states in
the closed circular tube were observed atθ > 5.5 in the experiments of Yazaki et al. Their
result is consistent with that by our numerical simulation in a 2D closed tube. The pressure
amplitudespampwith the temperature ratiosθ are shown in Fig.4. The pressure amplitudes
from the oscillatory initial state (A) atθ = 9.09 are shown by white circles, and those from
the quiescent initial state (B) atθ = 5.7 are shown by black squares. Two different steady
states are obtained at 6.2 < θ < 6.5.

The time averaged temperature distributions in the cold region are observed for the
initial state (A) to investigate these phenomena in detail. Figure 5 shows the temperature
distribution atθ = 9.09,7.14,5.88 in the cold region where the range of the temperature is
between 0.05 and 0.17. The temperature of the fluid is almost equal to the cold temperature
TC of the tube wall atθ = 9.09 . However, atθ = 7.14 and 5.88, the temperature of the fluid
in the tube is lower thanTC.

Figure 6 shows the time and cross section averaged energy flux< (e+ p)u > in the
length direction atθ = 9.09,7.14,5.88 with the initial state (A). They are averaged over 10
periods of the primary oscillation and the half width of the tube. The energy flows toward
the center of the tube whenθ = 9.09. On the other hand, in the cold region, the energy
flux is almost zero whenθ is 7.14, but the energy flows toward the hot end of the tube
whenθ = 5.88. This flux is corresponding to the cold temperature of the fluid in the central
region.

Figure 7 shows the acoustic intensity vector in the quarter region of the tube atθ =
9.09 with the initial state (A). The wall temperature changes betweenx/l = 0.25 and 0.28.
At x/l = 0.25 the acoustic energy flows to the cold region inside the boundary layer (
0 < y/l < 1.5× 10−3) and to the hot region outside the boundary layer ( 1.5× 10−3 <
y/l < 2.5×10−3). At the point of the cold region (x/l = 0.375), the values of the acoustic
energy inside the boundary layer (0< y/l < 5×10−4) are much larger than those outside
the boundary layer. This shows the role of the thermal boundary layer is important in
the mechanism of the thermo-acoustic oscillation. Therefore, it is necessary to study the
acoustic energy flow and thermal energy flow in detail in the cold region.
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Figure 4: Relationship between the pressure amplitude and the temperature ratio.
⃝: initial state (A) and¥: initial state (B).

(c) !=5.88

(b) !=7.14

(a) !=9.09

Figure 5: Time averaged temperature distribution in the cold region. (a)θ = 9.09,
(b) θ = 7.14, and (c)θ = 5.88 for the initial state (A).
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Figure 6: Time & cross section averaged energy flux in the length direction
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Figure 7: The acoustic intensity in the half region of the tube atθ = 9.09. The
initial state is (A).

Concluding remarks

We have successfully obtained Taconis oscillations in the closed tube. We observe two
different steady states at the same temperature ratio. In the cold region, the time averaged
temperature and the acoustic intensity inside the boundary layer are much different from
those outside the boundary layer. To study the function of the boundary layer in the energy
transportation is important to analyze the thermo-acoustic oscillation.
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