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Summary
The effect of the finite stiffness bonding between the piezoelectric plies of bi-

morph devices has been investigated. A boundary integral formulation for piezoe-
lasticity, based on a multidomain technique with imperfect interface conditions,
has been developed. The imperfect interface conditions between the piezoelectric
layers are described in terms of linear relations between the interface tractions, in
normal and tangential directions, and the respective discontinuity in displacements.
Continuity of the electric potential at the interface is also assumed and an iterative
procedure is implemented to avoid interface interference. Numerical analysis has
been performed on bimorph configurations with series arrangement and the influ-
ence of the adhesive is pointed out for both sensing and actuating functions.

Introduction
Due to the direct or converse piezoelectric effect, piezoelectric materials can

be used in the design of many devices working as sensors or actuators [1]. For
these reasons piezoelectric materials are a primary concern in the field of Smart-
Structure technology [2, 3]. There are basically two strategies adopted to integrate
piezoelectric patches into host structures: bonding or embedding. In both cases the
interface between the host structure and the piezoelectric material plays a decisive
role in terms of strain/stress transfer mechanism. In fact a good interface ensures
that effective actuation or sensing is achieved, avoiding the excessive voltages being
applied for actuators and inaccurate output results for sensors [4]. Studies including
the finite-stiffness character of the interface between the piezoelectric devices and
the host structures can be found in literature. Crawley and de Luis [2] assumed that
PZT patches are perfectly bonded to the host structure and only shear stresses exist
in the adhesive layer. Using similar assumptions, Crawley and Lazarus [5] applied
the theory to plates with perfectly bonded PZTs. Luo and Tong [6] modeled the
PZT patches and the host beams as Euler-Bernoulli beams and the adhesive as a
continuous spring with shear and peel stiffness. Later the same authors developed
a laminated beam element for PZT smart beams and a laminated plate element
for PZT smart plate including the shear and peel stiffness of the adhesive [7, 8]. In
this paper a multidomain boundary integral formulation [9] with imperfect bonding
conditions is employed to assess the influence of the bonding layer on the sensing
and actuating capabilities of piezoelectric devices. The characterization of the im-
perfect bonding conditions at the interface is approached by using a spring model
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which involves shear and peel stiffness. Additionally, continuity of electric po-
tential at the interface is assumed. Numerical analyses on piezoelectric bimorph
devices are presented for both sensing and actuating functions. The results show
that the method proposed is able to point out the impact of the adhesive layer on
the static electro-elastic response of this kind of Smart Structures.

Boundary Integral representation and Numerical Model
The formulation is developed for a two-dimensional piezoelectric domain Ω

with boundary ∂Ω lying in the x1 x2 plane under the hypothesis of generalized
plain strain elasticity and in-plane electrostatic. The governing equations of the
problem can be found in reference [10]. Considering a particular electroelastic state
defined by the generalized displacement field U j associated with the concentrated
generalized body forces F j acting in an infinite domain and applied at the point P0,
the reciprocity theorem for this particular and the actual electroelastic states leads
to the analogous of the Somigliana identity for the electromechanical problem [10]

c∗U(P0)+
∫

∂Ω
(T∗U−U∗T)d∂Ω =

∫
Ω

U∗FdΩ (1)

The boundary integral formulation is numerically implemented by using the bound-
ary element method [11], which provides a linear algebraic resolving system ex-
pressed in terms of generalized displacements and tractions nodal values δ and P,
respectively

Hδ +GP = 0 (2)

Eqs. (2), coupled with the electromechanical boundary conditions, provides the
solution of the problem for a single domain.

Multidomain BEM and generalized Spring Model at interface
The multidomain boundary element method [10, 11] is based on the division

of the original domain into homogeneous subregions so that Eqs. (2) still hold for
each single subdomain and the following relation can be written

M

∑
j=1

Hi
i jδ i

i j =
M

∑
j=1

Gi
i jP

i
i j(i = 1, 2, . . .,M) (3)

where M is the number of subregions considered, the superscript i indicates the
quantities associated with the i-th subdomain. Provided that for i = j the nodes
belong to the external boundary of the i-th subdomain, the subscripts ij denote
quantities related to the nodes belonging to the interface between the i-th and j-th
subdomains (see figure 1),. In the Eqs. (3) Hi

i j and Gi
i j are the matrices of influence

coefficients pertaining to the quantities δ i
i j and Pi

i j , respectively. To obtain the solu-
tion of the problem, the generalized displacement continuity and generalized trac-
tion equilibrium conditions along the interfaces between contiguous subdomains
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need to be restored. If imperfect bonding is assumed, indicating by Δδ i j the vec-
tor of the generalized displacement jumps across the interface between the i-th and
j-th subdomains, the compatibility conditions are written as

δ j
ji = δ i

i j +Δδ i j i = 1, . . .,M−1; j = i+1, . . . ,M (4)

According to the Interface Spring Model [9] and referring to local coordinate sys-
tems centered at each node of the interface boundary belonging to the domain i(see
figure 1), the normal and tangential components of the displacement jump and the
electric potential jump across the interface can be written as

δ j
N = δ i

N +Δδ i j
N with Δδ i j

N = kNPi
N

δ j
T = δ i

T +Δδ i j
T with Δδ i j

T = kT Pi
T

ϕ j = ϕ i +Δϕ i j with Δϕ i j = keDi
N

(5)

where kNand kT denote the interface compliance coefficients along normal and tan-
gential directions, while ke is the electric fictitious compliance coefficient to be
set to zero in order to restore the continuity of the electric potential between two
contiguous subregions.
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Figure 1: Multidomain configuration and Spring Model at interface.

Consequently in the global coordinate system one has [9]

δ j
ji = δ i

i j +Ki jPi
i j i = 1, . . .,M−1; j = i+1, . . . ,M (6)

where Ki j is a matrix containing the compliance interface constants and the trans-
formation matrix from local to global reference at the considered interface node. It
is worth nothing that the modeling of the displacement jump at the interface does
not require auxiliary interface elements since the compliance constants, character-
izing the elastic behavior of the adhesive between two different layers, enter the
assembling of matrices H and G. The system of Eqs. (3) and the interface con-
ditions provides a set of relationships, which, together with the external boundary
conditions on the external boundaries, allows to obtain the electromechanical re-
sponse of each subdomain. An iterative procedure need to be used to avoid overlap
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between interface coincident nodes. The algorithm employed in the present work
detects the contact conditions by checking the sign of the normal component of the
mechanical displacement jump at the interface. In the case of detected contact the
compliance constant kN is set to zero.

Numerical applications and discussion
The first configuration analysed consists of a piezoelectric series bimorph in

which the piezoelectric layers are used as sensors in closed circuit. The length of
the bimorph is L=25mm and a slender ratio L/h=10 is considered. The boundary
conditions and the material properties are taken from [12].

Poling direction

x1

Poling direction

VB

x1

x2

Figure 2: Series bimorph configuration as sensor and actuator.

Figure 3 show the through-the-thickness normalised vertical displacement and
electric potential distributions at x1 =L/2 in the case of perfect bonded interface. the
results are compared with those obtained by the finite element analysis performed
for the full 3D model [12].
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Figure 3: Through-the-thickness Vertical Displacement, Electric Potential.

Figure 4 shows the vertical displacement distribution obtained for both perfect
and imperfect bonding conditions. A 32% increment of the deflection in the case of
imperfect bonding, due to the softening of the bimorph, can be observed. This leads
to a change of the through-the-thickness electric potential distribution as shown in
figure 4. The modelling of the adhesive layer is then of significant importance in
order to correctly interpret the output of a bimorph used with sensing function.
To point out the effect of the adhesive layer on the actuating performances of a
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piezoelectric bimorph with series arrangement, an electric potential is applied to
the top and bottom faces of the plate (VB=-50V at x2=0 and VU=50V at x2=h) as
shown in figure 2. Figure 5 shows the through-the-thickness normalised vertical
and longitudinal displacement. The softening of the bimorph actuator due to the
adhesive layer can be pointed out by observing a 17% reduction of the through-the-
thickness deflection. As a consequence, the bonding layer affects the effectiveness
of a bimorph with actuating function since, in order to obtain a fixed deflection,
more voltages is needed.
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Figure 4: Vertical Displacement BEM, Electric Potential BEM (perfect/imperfect
bonding).
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Figure 5: Through-the-thickness Vertical Displacement, Longitudinal Displace-
ment.

Conclusion
The effect of the adhesive layer on the piezoelectric bimorph response has

been investigated by implementing a multidomain boundary integral formulation
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for piezoelectricity with imperfect bonding conditions. From the analyses per-
formed on piezoelectric bimorph with series arrangement a noticeable variation of
the electromechanical response for both sensing and actuating functions has been
pointed out. In particular, the presence of the adhesive layer leads to a reduction of
the structure stiffness and consequently to a decay of the bimorph effectiveness.
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