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Summary
In this paper, two new Mindlin-type plate bending elements have been derived

for the modelling of functionally graded plate subjected to various loading condi-
tions such as tensile loading, in-plane bending and out-of-plane bending. The prop-
erties of the first Mindlin-type element (i.e. Average Mindlin element) are com-
puted by using an average fibre distribution technique which averages the macro-
mechanical properties over each element. The properties of the second Mindlin-
type element (i.e. Smooth Mindlin element) are computed by using a smooth fi-
bre distribution technique, which directly uses the macro-mechanical properties at
Gaussian quadrature points of each element. There were two types of non-linearity
considered in the modelling of the plate, which include finite strain and material
degradation. The composite plate considered in this paper is functionally graded in
the longitudinal direction only, but the FE code developed is capable of analysing
composite plates with functional gradation in transverse and radial direction as
well. This study was able to show that the structural integrity enhancement and
strength maximisation of composite structures are achievable through functional
gradation of material properties over the structure.

Introduction
Composite materials are often used in different engineering fields, especially in

the aerospace field. The advantage of composite materials is the high stiffness-to-
weight and strength-to-weight ratios. The limitations of composite materials are the
following: the weakness of interfaces between layers may lead to de-lamination,
extreme thermal loads may lead to de-bonding between matrix and fibre due to
mismatch of mechanical properties, and residual stresses may be present due to
difference in coefficients of thermal expansion of the fibre and the matrix. To over-
come the limitations, functionally graded materials (FGMs) were proposed. The
FGMs are made in such a way that the volume fractions of two or more materials
are varied continuously along a certain dimension. The FGMs can be made as re-
quired for different applications. For example, thermal barrier plate structures can
be made from a mixture of ceramic and metal for high temperature application.
The advantage of the FGM plate is that its material properties vary continuously
from one surface to the other, hence avoiding the interface problem that exists in
homogeneous composites.
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The FGM concept originated in Japan in 1984 during the space-plane project,
in the form of a proposed thermal barrier material capable of withstanding a surface
temperature of 2000 K and a temperature gradient of 1000 K across a cross section
less than 10mm. In 2004, Chen et al [1] investigated the buckling behaviour of
FGM rectangular plates subjected to non-linearly distributed in-plane edge loads.
Chen et al [1] stated that a mesh-free method which approximates displacements
based on scattered nodes (i.e. radial basis function and polynomial basis) was em-
ployed, in-order to avoid complicated numerical procedures that arises in the FEM
from the use of elements. This FEM complication was dealt with in this paper.
In 2000, Reddy [2] presented a theoretical formulation and finite element models
based on third order shear deformation theory for the analysis of through-thickness
functionally graded plates. The Navier solution for simply supported plates based
on the linear third-order theory and non-linear static and dynamic finite element
results based on the first-order theory were presented by Reddy [2] to show ef-
fects of volume fractions and modulus ratio of the constituents on deflections and
transverse shear stresses.

Theory of Mindlin-Type Elements
This section defines the displacement equation, strain equation, stress equa-

tion, strain energy variation and generalised equation of equilibrium. The gener-
alised equation of equilibrium is then linearised, in-order to obtain the Mindin-type
element equation

Displacement Equations
The displacement components in the x, y and z directions at any point (x, y, z)

inside the plate are given below [3, 4].

u(x,y, z) = uo(x,y)+ zθy(x,y)
v(x,y, z) = vo(x,y)− zθx(x,y)
w(x,y, z)≈ w(x,y)

(1)

where uo, vo represent values at the midplane of the plate (z=0), and θx, θy are
average slope angles defined below.

θx(x,y) =
∂w
∂y

− γ̄yz

θy(x,y) = −
[

∂w
∂x

− γ̄xz

] (2)

where γ̄yz and γ̄yz represent the average (over the thickness) of transverse shear
strains.

Mindlin-type elements are based on Lagrangian interpolation and for an n-node
element, the mid-plane displacement components and average slope angle at any
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point (x, y) in the mid-plane of the plate can be interpolated as follows:

uo(x,y) =
n

∑
i=1

Ni(x,y)ui

vo(x,y) =
n

∑
i=1

Ni(x,y)vi

w(x,y) =
n

∑
i=1

Ni(x,y)wi

θx(x,y) =
n

∑
i=1

Ni(x,y)(θx)i

θy(x,y) =
n

∑
i=1

Ni(x,y)(θy)i

(3)

Transverse shear strain components
These strain components are assumed infinitesimal and are represented by the

equation shown below.

γ(x,y, z) = fγ(z)
n

∑
i=1

[
∂Ni
∂x

w

i
+Ni (θy)i

∂Ni
∂y

w

i
−Ni (θx)i

]
(4)

The shear strain vector equation above can be manipulated to obtain the variation
of shear strain vector.

x-y strain components
These strain components can be obtained from Green’s strain-displacement

equations. They can be divided into two parts which include the infinitesimal com-
ponent derived from the Cauchy’s strain-displacement equation, and the additional
non-linear terms in Green’s equation. The total strain vector can be obtained in
terms of the nodal parameters and shape function by substituting the above dis-
placement and slope components into the Green’s strain-displacement equations.

The total strain vector equation above can then be manipulated to obtain the
variation of strain vector in terms of the nodal parameters and shape functions.

Strain Energy Variation
The variation of strain energy density at a point inside the Lth layer is given

below.
dŪ (L) = dγ tτ (L) +dε tσ (L) (5)

Generalised Equation of Equilibrium
The work done by actual loads can be expressed in terms of equivalent nodal

loads as given below.
dW = dδ t

oFo +dδ t
bFb (6)
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Using the principle of virtual work, the generalised equation of equilibrium can be
derived.

dU −dW = 0 (7)

An approximate solution of this equation of equilibrium gives the expression for
the residual vector.

Linearisation of Equations of Equilibrium and Derivation of Element Equa-
tions

In order to restore equilibrium, the residual vector must approach a value of
zero. This equilibrium is achieved by employing the expressions below.

δnew = δold +Δδ ;σ (L)
new = σold +Δσ ;Anew = Aold +ΔA (8)

The combination of the above expressions and the residual vector expressions re-
sults in a final matrix equation, which is given below.

Ne

∑
e=1

{
(K+Kσ )

[
Δδo

Δδb

]}
=

[
Ro

Rb

]
(9)

Material properties for each composite layer are calculated at each point from fibre
and matrix properties using different micromechanics equations. The integrations
to obtain the stiffness matrices are carried out analytically through the element
thickness. For average-type element, the material properties are averaged and con-
sidered constant over each element layer. For smooth-type element, the material
properties are based on actual distributions of fibre to matrix ratios.

Progressive damage analysis
The load is applied incrementally. For each load increment, failure is assessed

at each Gauss point, in each composite layer. If damage is detected in an element
layer, the stiffness of that layer is reduced inside the element by the percentage of
damage, and iterations are carried out to restore equilibrium. Non-linearity due to
finite strains is also considered within the iterations. In the case of material non-
linearity, during each load increment a check for failure is undertaken using an
interactive failure criterion called Tsai-Hill criterion [5].

Finite Element Modelling
A rectangular plate made of a typical FGM with its midplane as shown in Fig-

ure 1 was considered. A 72 element mesh was employed for all the three validation
case studies. The elements used in the validation exercise include 4-noded Average
Mindlin element, 4-noded Smooth Mindlin element and 4-noded Ordinary Mindlin
element. The boundary condition applied in the three case studies is that edge x=0
is a clamped edge. A load of 0.1kN was applied as an equivalent nodal loading at
edge x=2 for all load cases.
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Figure 1: Mesh

Optimum Design
The optimum design criterion employed in this paper can be described as min-

imum deflection criterion.

The equation used for fibre distribution is as given below.

Vf (ξ ) = V1 +(V2 −V1)ξ p where ξ =
x−x1

x2 −x1
V1,V2 = fibre ratio at x1 and x2

(10)
Nine fibre distribution cases were considered, where P could assume a value of
0.5, 1 and 2. Also V1 could assume the value 0.5, 0.55 and 0.6. It must be noted
that all cases have the same amount of fibre as in the P=0 case but different fibre
distributions across the composite domain. The P=0 case represents the traditional
composite case with uniform fibre distribution.

Figure 2 shows a displacement plot of out-of-plane bending cases with P=0 and
P=2. This plot shows the most pronounced fibre distribution effect in all fibre dis-
tribution cases and all loading cases. The fibre distribution case P=2 and V1=0.55
satisfies the minimum deflection criterion for the out-of-plane bending case with
59% wmax-deflection relative to the traditional composite case. This fibre distribu-
tion case also satisfies the minimum deflection criterion for the in-plane bending
case with 84% vmax-deflection relative to the traditional composite case. But this fi-
bre distribution case results in an adverse umax-deflection result for the tension case
with 125% umax-deflection relative to the traditional case. Hence it can be deduced
that the fibre distribution case with P=2 and V1=0.55 gives the optimum design for
most load cases. The prioritisation of the load cases need to be undertaken for a
given design in determining whether this adverse result is a good enough trade-off.
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Figure 2: Displacement results for out-of-plane bending cases with P=0 and P=2

Conclusion
In this paper, two new Mindlin-type elements have been formulated and used

in performing a finite strain analysis and progressive damage analysis of a func-
tionally graded composite structure. Due to the accuracy of the Smooth Mindlin
element, it was used to demonstrate the design optimisation of the functionally
graded composite structure. A methodical approach was used in demonstrating
the design optimisation process and an optimum fibre distribution was obtained for
the load cases considered. Also this paper achieved its objective by presenting a
detailed explanation of the functional graded technology from theoretical concept
through to optimum design application. Future work recommendation would be to
extend this work to cover non-linear dynamics and thermo-elasticity.
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