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Summary
A modified lattice model using finite element method has been developed to

study the mode-I fracture analysis of heterogeneous materials like concrete. In this
model, the truss members always join at points where aggregates are located which
are modeled as plane stress triangular elements. The truss members are given the
properties of cement mortar matrix randomly, so as to represent the randomness of
strength in concrete. It is widely accepted that the fracture of concrete structures
should not be based on strength criterion alone, but should be coupled with energy
criterion. Here, by incorporating the strain softening through a parameter ‘α’, the
energy concept is introduced. The softening branch of load-displacement curves
was successfully obtained. From the sensitivity study, it was observed that the
maximum load of a beam is most sensitive to the tensile strength of mortar. It
is seen that by varying the values of properties of mortar according to a normal
random distribution, better results can be obtained for load-displacement diagram.

Introduction
Concrete is a highly heterogeneous material. Its properties vary widely from

point to point, due to the presence of high strength aggregates, medium strength
mortar and weak aggregate mortar interfaces. Further, voids are also present which
act as stress raisers. Cracks generally propagate in a direction perpendicular to the
maximum tensile stress. Due to high heterogeneity in concrete, they also follow
the weakest links in the material. The heterogeneous nature of concrete, makes the
crack tortuous, leading its way through weak bonds, voids, mortar and getting ar-
rested on encountering a hard aggregate forming crack face bridges. Experimental
study on the tortuosity of crack, crack face bridging etc. was reported by many
researchers [1]. Hence, it would be far from reality to model this heterogeneous
concrete as a homogeneous one as done in the numerical models presented in liter-
ature.

Models considering concrete to be heterogeneous material
Some of the models considering concrete as heterogeneous material can be

found in the literature [2-6]. A lattice model, preferred for studying fracture of ma-
terials where disorder is important has been applied to study fracture of concrete
[7,8]. In earlier models the material was modeled as a plane pin-jointed frame.
Certain number of joints was fixed and the coordinates of these joints were selected
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randomly. The members connecting the joints are based on the distance between
two joints. The properties of the various members like, Young’s modulus E, and
tensile strength σt were allocated on a random basis. The members are assumed to
fail as soon as the stresses in those members equal to its tensile strength. The stiff-
ness is reduced to zero for such members. The model is implemented by analyzing
for a succession of small increments of boundary displacement and the correspond-
ing load were obtained. This is continued until the load reaches zero. One of the
principal difficulties in using the model arises from the need to limit the size of the
sample in order to economize on the computational effort. The softening of the
individual members has not been implemented. In lattice models the continuum
is discretised such that the grid is made finer in regions of higher stress as often
done for finite element methods. In lattice models regular triangular lattice was
used for simulating fracture in concrete. Two approaches have been followed to
introduce heterogeneity. The first approach used for introducing the heterogeneity
is generating the grain structure of concrete [9]. Using a probability distribution
function, circles of different diameter at different locations are generated. These
circles projected on top of the generated grain structure, represent aggregates. The
truss elements situated inside these aggregates are given the properties of aggre-
gates. Different material properties are assigned to the respective bar elements in
matrix, aggregates and bond zone.

The second approach of implementing disorder is to specify a statistical distri-
bution of material properties [10,11]. Linear finite element analysis is performed
using displacement control method until the load reduces to zero. The model was
applied to single edged notched specimens to predict the fracture behavior of plain
concrete. But the influence of strain softening on the fracture behavior of plain
concrete beam for matrix elements was not implemented [12].

In the modified lattice model presented here, the concrete material is simu-
lated using a combination of constant strain triangles and truss elements. The truss
members are given the properties of the matrix randomly so as to represent the ran-
domness of strength in concrete. It is widely accepted that the fracture of concrete
material should not be based on strength criterion alone, but should be coupled with
energy criterion. Hence, by incorporating the strain softening through a parame-
ter α , the energy concept are introduced in the present model [13,14]. The model
is validated with some of the published experimental results [15,16]. The soften-
ing branch of load-displacement curves has been successfully obtained using the
present model.

Description of the modified lattice model
In this model the concrete is simulated using a combination of constant strain

triangles and truss members. The constant strain triangular elements are used to
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represent the stiffer aggregates and the truss elements are used to represent the
softer matrix. Hence in the present model simple elements have been chosen to
model the concrete, which is a highly heterogeneous material. The positions of
the coarse aggregates are chosen randomly. Pairs of pseudo-random numbers fol-
lowing uniform distribution have been generated. These pairs of random numbers
represent the position coordinates of coarse aggregates. These are modeled using
constant strain triangle (CST) elements. The domain of these random numbers is
the boundary of the specimen analyzed. Even though the size of these CST’s can
be chosen randomly according to any probability distribution function, for the sake
of simplicity, constant size for CST’s has been assumed for validating the present
model with experimental results.

The number of the aggregates ‘n’, required for a particular specimen is ob-
tained by keeping the ratio of the total volume of the coarse aggregates to the total
volume of the concrete as 0.75. In this process, it is also seen that no two aggre-
gates completely overlap each other. At this stage, the chosen domain is filled with
randomly chosen position of aggregates, resulting in 3n nodes (3 nodes per CST).
Some nodes are also introduced on the boundary of the domain. Nodes are also
introduced inside the domain at places where CST’s are far apart. This fixes the
total number of nodal points for the lattice model. The model is set ready for the
generation of truss members which represent the matrix. Each node is taken in turn,
and the distance ‘d’ to all the other nodes is calculated. If this distance is equal to
or less than a chosen distance called threshold distance ‘do’, a member of length
‘d’ equal to the distance between the nodes is generated. Repetition of elements
between the two same nodes is avoided. The various material properties like the
Young’s modulus E, tensile strength σt , and the softening slope parameter α can be
ascribed randomly following any probabilistic distribution to the various matrix el-
ement and the aggregates. From the material parameters as shown in fig.1, ultimate
strain εu can be determined.

The Poisson’s ratio is taken as 0.1. Now the specimen is subjected to a small
prescribed displacement and analyzed. At the end of the analysis, the load required
to cause the displacement is noted. The stress in all the elements is monitored at the
end of the cycle. If the maximum principal stress in none of the elements has not
yet attained their respective tensile strengths, the prescribed displacement is given
a small increment and the analysis is repeated. If the maximum principal stress in
any of the elements has exceeded the tensile strength of that element, then Young’s
modulus and the tensile strength are suitably modified as shown in fig. 2. At some
prescribed displacement ‘d’, the maximum principal stress σ1, in an element ‘e’
could be greater than its tensile strength σt . The stress σ1 is obtained on the basis
of initial Young’s modulus, E. In reality, the stress in that element cannot go beyond
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its limiting tensile strength, σt . After reaching σt , it follows the softening slope of
the stress-strain curve, where the Young’s modulus is constantly changing.
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Figure 1: Stress-strain curve of concrete with input details.
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Figure 2: Modification procedure for material properties E and σt of an element
when the maximum principal stress exceeds σt .

Modeling this changing Young’s modulus exactly is extremely tedious and time
consuming. The present model makes every element to follow the softening slope
with a little approximation. The strain corresponding to the stress σt based on
the initial Young’s modulus is ε1. But according to the softening slope, the stress
bearing capacity of that element is σ1 at that particular strain ε1.The correspond-
ing Young’s modulus also changes to E1.Thus, these element properties namely
Young’s modulus and tensile strength are modified to E1 and σt1 respectively dur-
ing the increased prescribed displacements and analysis is repeated. If the stress
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attained during this step is σ2 based on Young’s modulus E1, the strain ε2 corre-
sponding to that stress is calculated and the Young’s modulus and tensile strength
are further modified to E11 and σt2. The analysis procedure is repeated again with
small increments of prescribed displacements and changing the material properties
at each stage suitably. The element stiffness is made zero as soon as the strain in
that element crosses the ultimate strain εu of that element. The analysis is continued
until final fracture occurs or the load carrying capacity of the beam reduces to zero.
The model described above is applied to some of the three-point bend specimen
tested by many researchers. Since the three-point bend specimen is symmetric,
only half part of the specimen is modeled for the present analysis. As shown in
fig. 3, only the central part of the beam around the notch tip is modeled as a het-
erogeneous material. It is only the region around the crack tip is subjected to the
fracture process developing micro-cracks and process zone. Elsewhere, the beam
is normally not subjected to the fracture process. Hence, the remainder of the spec-
imen is modeled using plane stress elements. The heterogeneity is modeled in the
zone near the crack tip whose size is chosen as equal to the depth of the beam for
convenience. Modeling the outer parts of the specimen using plane stress elements
is also necessary for including the exact boundary conditions of the experiment.
This also saves computer execution time and memory space.

Figure 3: Modeling half part of the three point bend specimen (Nallathambi et al.
[1984] (600×76×80 mm) and the zone of heterogeneity

Application of the present model to a notched plain concrete beam
Three point bend specimen tested in references [15,16] is analyzed by the

present model. The specimen whose dimensions are shown in Fig. 3 is symmetric.
Hence, only half beam is modeled, taking advantage of the symmetry. The zone
where the heterogeneity of concrete is modeled is shown in fig. 3. A thin layer
at the top of the heterogeneous zone is modeled as homogeneous continuum with
plane stress elements for the application of boundary conditions. The width of the
heterogeneous zone is approximately taken as equal to the depth of the beam. The
area of this zone is calculated as 4900 mm2 and the area of the aggregates is cal-
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culated as 75% of the total area of the heterogeneous zone which is equal to 3675
mm2.

Taking the average size of the aggregates as 75 mm2, which are modeled as
constant strain triangles, the number of aggregates which make the above area is
calculated (here n = 49). Here all the aggregates are assumed to be of the same size
for simplicity. Then an approximate threshold distance (do = 12 mm) is assumed,
to connect the truss members in the heterogeneous zone, which results in a certain
number of truss members (ns).

This modeled beam is now checked for equivalent stiffness. All the elements
are given the same material properties E = 10000 N/mm2, ν = 0.1, and thickness
= 1.0 mm. A point load of P = 100N is applied at the tip treating it as cantilever
beam and the deflection is noted at the same point. With the threshold distance
‘do’= 12mm, 967 truss members are established. The deflection from the analy-
sis is found to be 0.7844 mm as compared to the theoretical deflection of 0.7455
mm. Since the deflection is found to be more the stiffness is increased by increas-
ing the number of truss members. It was found by trial with threshold distance
‘do’ = 17 mm, 1590 truss members are established for which deflection obtained
from the analysis (0.7491 mm) coincides with the theoretical one with permissible
error. Here the material properties of the truss elements representing mortar and
CST’s representing aggregates are varied randomly according to some probability
distribution law. The beam is subjected to an incremental prescribed displacements
and stiffness of an element is modified as and when required. The load P for each
prescribed displacement is noted. The analysis is stopped when the load P reaches
zero which means that the specimen has failed completely.

Discussion of Results from the modified lattice model
The present model is applied to some of the three-point bend specimens tested

experimentally [15,16]. The most striking feature of the present model is that it is
able to simulate the post-peak softening behavior of the load-deflection curves. The
three-point bend specimens when tested under strain controlled conditions, show
softening behavior beyond peak load where, the load decreases as the displace-
ment increases. The model appears realistic, since the concrete is not modeled as a
homogeneous continuum but modeled as a heterogeneous continuum.

By incorporating the softening parameter α into the model, energy criterion
is introduced for the fracture analysis of the concrete. This parameter α is a size
dependent parameter, which is based on the concepts of fracture energy G f . The
trend of variation of softening slopes which give the concrete maximum load of the
various beams, represent the size effect which is prominent in concrete structures.
The area under the stress-strain curve is a measure of the fracture energy G f , which
is the energy consumed in the formation and opening of all micro-cracks per unit
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area of crack plane. For a given value of E and σt as the value of the α increases,
the area under the stress-strain curve increases and hence the fracture energy, G f

increases. The fracture energy G f decreases as the value of α decreases. The
fracture energy G f also depends on initial Young’s modulus E and tensile strength
σt .

Basically, the mortar and aggregates are given different material properties.
Later, three cases are analyzed, wherein the values of the material properties of
mortar are assumed to vary in the specimen spatially. This is modeled by ascribing
the values of the properties of various truss members representing mortar according
to some probability distribution law. The three different distributions are constant
distribution, uniform random distribution and normally random distribution. Due
to lack of information on the values of individual material properties, the beams
were analyzed assuming average values of mortar and aggregates. The part of the
beam where it is modeled homogeneously, the properties of concrete mentioned in
the literature are used. Sensitivity study is also done with regard to the effect of the
variation of Young’s modulus, tensile strength and the softening slope of the mortar
on the maximum load of the beam.

Load-displacement curves from modified lattice model
The average values of the properties of mortar are assumed as E = 25000

N/mm2, σt = 3.0 to 4.0 N/mm2 and α = 5.0. The portion of the beam where
concrete is modeled as a homogeneous material, the values of the properties men-
tioned in the literature are assumed. The central deflection is plotted against the
corresponding load for the various specimens analyzed using the present model.
The load-displacement curves are found to be very close to the experimentally ob-
tained load-displacement curves.

Initially, all the truss elements representing mortar are given the same values of
the properties, Young’s modulus E, tensile strength σt and softening slope parame-
ter α and all the CST’s represents the aggregates are given a different set of values
of the above mentioned properties. The part of the beam outside the heterogeneous
zone is given the values of the properties of homogeneous concrete mentioned in
the literature. The value of the softening slope parameter α of the truss members
representing mortar in the heterogeneous zone are suitably varied, such that the
value of the maximum load obtained from the present analysis is closer to the ex-
perimental value. A typical plot of the load-displacement curves obtained from the
present analysis are shown in figs. 4 and 5. The softening response of the beams
beyond peak load, observed in experiments is seen in the present model.

Two beams are analyzed to study the variation in the load-displacement dia-
grams when the values of properties of the mortar are assumed to vary spatially
in the heterogeneous zone, according to three different distributions. Initially, the
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Figure 4: Predicted load-displacement
diagram using modified lattice model
for a beam tested by Gjorv et al. [1977],
(550×50×50 mm, a = 15.0 mm, Pexp =
290 N).

Figure 5: Predicted load-displacement
diagram using modified lattice model
for a beam tested by Nallathambi et
al. [1984], (600×76×80 mm, a = 15.2
mm, Pexp = 1700 N).

Figure 6: Uniform distribution of the
properties (E, σt , α) over the elements
for a beam tested by Nallathambi et al.
[1984] (600×76×80 mm).

Figure 7: Normal distribution of the
properties (E, σt , α) over the elements
for a beam tested by Nallathambi et al.
[1984] (600×76×80 mm).

beams were analyzed by giving constant values of the properties E, σt and α of the
truss members representing mortar. Next the values of the properties E, σt and α
of the truss members are varied according to uniform random distribution and nor-
mal random distribution as shown in Figs. 6 and 7. The figures include the beam
details tested experimentally. A typical load-displacement diagram obtained using
the three different random distributions are shown in Fig. 8.
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Figure 8: Comparative load-displacement diagrams of a beam tested by Nal-
lathambi et al. [1984] (600×76×80 mm, a = 30.4 mm), for three different dis-
tributions of properties (E, σt , α) of mortar.

Sensitivity study from the modified lattice model
The variation of the maximum load of a beam with the variation of Young’s

modulus E, tensile strength σt and softening slope parameter α of the mortar matrix
has been studied. All the lattice elements representing the mortar are given a set
of values to the initial Young’s modulus E, tensile strength σt and softening slope
parameter α . The aggregates and the homogeneous concrete are given different set
of values. The effect of the variation of the tensile strength σt of the mortar on the
maximum load of the beam is studied by varying this parameter and by keeping
the other values of properties constant. It is observed that an increase in the tensile
strength σt of the mortar causes an increase in the maximum load of the beam.
Table 1 gives the variation of the maximum load with the changing tensile strength
σt for a few beams. The values of E and α of the mortar are also mentioned in
the Table 1. It can be seen from the fig.1 that as the tensile strength σt of a lattice
element representing mortar is increased, keeping E and α constant, the area under
the stress-strain curve of the element increases. The area under the stress-strain
curve of the element represents the fracture energy G f , which is a measure of the
energy required to completely fracture the element. Hence an increase in the tensile
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strength σt causes an increase in the energy required to completely fracture the
element. This results in an increase in the maximum load of the beam. It can be
seen from Table 1 that the maximum load of a beam is very sensitive to the variation
in the tensile strength σt of the mortar. The results using the present model on the
beam tested (600 x 76 x 80 mm, a = 15.2 mm) indicate, an increase of 167% in the
tensile strength σt of the mortar, causes an increase of 119% in the maximum load
of the beam. Similarly an increase of 31.2% in the maximum load of the beam is
observed for an increase of 40% in the tensile strength of the mortar for the beam
600x76x80mm, a = 30.4 mm. Thus, it can be said that the maximum load of a
beam is very sensitive to the variation of tensile strength σt of the mortar.

Table 1: Sensitivity of maximum load of a beam to the variation in tensile strength
of mortar

Details of the beam Tensile strength Pmax

N/mm2 N
3.0 737.1

Nallathambi and Karihaloo 5.0 1120.0
(600×76×80) mm 6.0 1257.3

a = 15.2 mm , Pexp = 1700 N 7.0 1489.9
E = 25000.0 N/mm2 , α = 3.0 8.0 1618.2

Nallathambi and Karihaloo
(600×76×80) mm 5.0 674.0

a = 30.4 mm , Pexp = 900 N 6.0 792.1
E = 25000.0 N/mm2, α = 3.0 7.0 884.3

Gjorv et al. 5.0 95.8
(550×50×50) mm 6.0 111.5

a = 25.0 mm , Pexp = 150 N 7.0 127.1
E = 25000.0 N/mm2, α = 5.0 8.0 142.3

The variation of maximum load of a beam as a result of variation of initial
Young’s modulus of the mortar is studied. In this process, the other two properties
of mortar, namely, tensile strength σt and softening slope parameter α are kept
constant. The properties of aggregates and the surrounding homogeneous zone are
also kept constant. It is observed that as the initial Young’s modulus E of mortar
is increased keeping σt and α constant, the maximum load of the beam reduces.
Table 2 gives the variation of the maximum load with the changing initial Young’s
modulus for some of the beams analyzed. The values of the other two parameters of
the mortar are also mentioned in the table. The observed decrease in the maximum
load with increasing initial Young’s modulus E of an element is explained based
on energy concepts. As the initial Young’s modulus E of an element is increased
keeping σt and α constant, the area under the stress-strain curve of the element
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decreases as can be seen from fig.1. Thus, as the fracture energy G f decreases the
load bearing capacity decreases. Hence the maximum load of the beam decreases
with an increase in initial Young’s modulus E, keeping σt and α constant for mortar.
Table 2 indicates that the maximum load of a beam is less sensitive to the variation
in the initial Young’s modulus E of the mortar. The results for the beam shown
in Table 2 (600×76×80 mm, a = 30.4 mm) indicate that an increase of 120% in
the initial Young’s modulus E, causes a mere decrease of 6% in the maximum load
of the beam when σt = 4.0 N/mm2, α = 7.0. Similarly, for the same beam with
different value of softening slope parameter α = 5.0, it is seen that an increase
of 80% in the initial Young’s modulus E, causes a mere decrease of 4.8% in the
maximum load of the beam. Thus, it can be said that the maximum load of a beam
is very less sensitive to the variation of initial Young’s modulus E of the mortar.

Table 2: Sensitivity of maximum load of a beam to the variation in Young’s modu-
lus of mortar

Details of the beam Young’s modulus Pmax

N/mm2 N
Nallathambi and Karihaloo 25000 727.0

(600×76×80) mm 35000 704.0
a = 30.4 mm , Pexp = 900 N 45000 690.4
σt = 4.0 N/mm2 ,α = 7.0 55000 679.6

Nallathambi and Karihaloo 25000 674.0
(600×76×80) mm 35000 653.0

a = 30.4 mm , Pexp = 900 N 45000 641.6
σt = 4.0 N/mm2 , α = 5.0

Gjorv et al. 25000 95.8
(550×50×50) mm 35000 95.5

a = 25.0 mm , Pexp = 150 N 45000 95.6
σt = 4.0 N/mm2 , α = 5.0 55000 96.4

65000 95.8

The effect of the variation of the softening slope parameter α of the mortar
on the maximum load of a beam is studied in a similar manner. Here, the values
of softening parameter α , of the lattice element representing mortar were varied
keeping E and σt constant. The properties of the aggregates and the homogeneous
concrete zone for a beam are kept constant during this sensitivity study. The in-
crease in the softening parameter α of an element causes an increase in the fracture
energy G f of the element as shown in Fig 1.Thus, more energy is needed to com-
pletely fracture this element. This causes an increase in the maximum load of the
beam. The results in the Table 3 indicate that the maximum load of a beam is sen-
sitive to the variation in the softening parameter α of the mortar. It is found from
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the results for the beam in Table 3 (600x76x80 mm, a = 15.2 mm) that, an increase
of 100% in the softening slope parameter α causes an increase of 12.1% in the
maximum load of the beam. Similar results on the beam 600x76x80 mm, a = 30.4
mm indicate that an increase of 120% in the softening slope parameter α , causes
an increase of 16.4% in the maximum load of the beam. Thus, α does not seem to
significantly influence the value of the maximum load of the beam.

Conclusions from the present study
The modified lattice model presented here is more realistic as compared to

other existing model due to modeling of heterogeneity of concrete around the crack
tip which is subjected to the fracture process, developing micro-cracks and process
zone. Elsewhere, the beam is normally not subjected to the fracture process. The
load-displacement curves obtained from the present model are found to match the
experimentally obtained load-displacement curves. It is seen that by varying the
values of properties of mortar in a region according to normal random distribution,
better results can be obtained for load-displacement diagram. From the sensitivity
study, it is observed that the maximum load of a beam is most sensitive to the
tensile strength of mortar, less sensitive to the softening slope parameters of mortar
and least sensitive to the Young’s modulus of mortar. Hence, it can be concluded
that using a mortar of higher tensile strength the load carrying capacity of a beam
can be increased.
Table 3: Sensitivity of maximum load of a beam to the variation in softening slope
parameter α of mortar

Details of the beam Young’s modulus Pmax

N/mm2 N
Nallathambi and Karihaloo 3.0 1120.0

(600×76×80) mm 4.0 1172.2
a = 15.2 mm , Pexp = 1700 N 5.0 1218.1

σt = 4.0N/mm2 , E = 25000 N/mm2 6.0 1255.6
Nallathambi and Karihaloo 5.0 674.0

(600×76×80) mm 7.0 727.0
a = 30.4 mm , Pexp = 900 N 9.0 762.9

σt = 4.0N/mm2 , E = 25000 N/mm2 11.0 784.3
Gjorv et al. 5.0 95.8

(550×50×50) mm 7.0 98.6
a = 25.0 mm , Pexp = 150 N 9.0 103.6

σt = 4.0 N/mm2 , E = 25000 N/mm2 11.0 109.2
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