
Copyright c© 2008 ICCES Proceedings of ICCES’08, pp.405-411

Computational Simulation of Mechanical Behavior of
Semi-Crystalline Polymers with Randomly Distributed

Rubber Particles
M. Uchida1, N. Tada1 and Y. Tomita2

Summary
Micro- to mesoscopic deformation behavior of semi-crystalline polymer with

randomly distributed rubber particles is evaluated by numerical simulation. In this
model, dimension of mesostructure is identified by volume fraction of interface re-
gion around the rubber particles. The effects of strain rate and size of mesostructure
on macroscopic stress-strain relation and strain distribution in mesoscopic area are
discussed. In the earlier stage of deformation, the slope of stress-strain relation
changes by rubber particle size while stress in the following deformation is mainly
affected by the tensile strain rate. The anisotropic deformation in lamellar ori-
ented interface region causes change in the strain distribution depending on size of
mesostructure.

Introduction
In order to improve the toughness of polymeric materials, rubber particles are

often blended into the polymer matrix, which leads to lower stress triaxiality in
the polymer matrix. In the case of semi-crystalline polymer matrix, mesostruc-
tures become very complex by the introduction of rubber particle, and they af-
fect the macroscopic mechanical behaviors. For example, a ligament thickness
between rubber particles is known as a key parameter to evaluate toughness of rub-
ber blended semi-crystalline polymers[1]. This is closely related to the preferential
orientation of lamellae around the rubber particle [2, 3].

Relationship between mechanical behavior of rubber blended glassy polymer
and its material morphology such as volume fraction, distribution of rubber parti-
cles or heterogeneity of glassy polymer matrix is clarified by the numerical inves-
tigation [4-6]. Several papers concerning the modeling of mechanical deformation
behavior of rubber blended semi-crystalline polymers have also been published [7,
8]. However, the constitutive relation of semi-crystalline polymer matrix is mod-
eled by the macroscopic hardening theory.

The authors proposed a multi-scale model of rubber blended semi-crystalline
polymer by using large deformation finite element homogenization method [9].
This model can evaluate the mechanical behavior and evolution of material mor-
phology in the micro- to mesoscopic scales of material. In this paper, the effect of
tensile strain rate and size of rubber particle is investigated by computational simu-
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lation of tensile deformation of High Density Polyethylene (HDPE) with randomly
distributed rubber particles.

Constitutive Equation
In this study, mesostructure of rubber blended semi-crystalline polymer is di-

vided into the three phases; rubber particle, lamellar oriented interface region and
isotropic matrix. Rubber particles are replaced by voids on the assumption that
material contains cavitated rubber particles[4]. Mechanical behavior in lamellar
oriented interface region and isotropic matrix is described as follows.

The mechanical behavior of the lamellar oriented interface region is based on
the deformation of crystalline and amorphous phases which consist of microscopic
area of semi-crystalline polymers. The crystalline plasticity theory with the penalty
method[10] and the nonaffine molecular chain network theory[11] were employed
to describe deformation behaviors of each phases.

The constitutive equation for the crystalline phase is expressed as[10]
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Schmid tensor and λ0 is the penalty constant which represents the chain directional
stiffness.

The constitutive equation for the amorphous phase is expressed as[11]
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where DA
i jkl is isotropic elastic modulus tensor, γ̇pA is plastic shear strain rate, τ∗ is

the applied shear stress. Bi j in Eq. (2) is the back-stress tensor and the principal
components are expressed by employing the eight-chain model[12],
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age number of segments in a single chain, CR is a rubber elastic modulus, and
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L(x) = coth(x)− 1/x is the Langevin function. In the nonaffine model, N may
change depending on the distortion ξ [11]. The simplest expression of the number
of entangled points is N = N0 exp{c(1−ξ )} with ξ = 1 in the reference state, and
N0 is the number of segments in a single chain in the reference state and c is a
material constant.

On the other hand, constitutive equation for isotropic matrix is expressed as
following macroscopic elasto-visco-plastic constitutive equation[8],

σeq = σ0

⎡
⎣hεeq +qmM

{
1+

(
ε̇eq

qγ̇M
0

)2
}mM/2

⎤
⎦ , (4)

where σ0, γ̇M
0 , h and q are material constants, mM is strain rate sensitivity exponent,

σeq = 3σ ′
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i j/2 and ε̇eq = 2ε̇i jε̇i j/3 are equivalent stress and strain rate, εeq =∫ t
0 ε̇eqdt is equivalent strain.

Computational Model
Figure 1 shows computational model of mesostructures of semi-crystalline

polymer with randomly distributed rubber particles. As mentioned above, mesostruc-
tures of rubber blended semi-crystalline polymer is divided into three region; rub-
ber particle, lamellar oriented interface region and isotropic matrix. The thickness
of interface region is approximately 0.3 μm for HDPE[3]. Therefore, dimension
of mesostructure is identified by volume fraction of interface region in this model.
Fig. 1(a) shows Representative Volume Element (RVE) model of mesostructure of
material and boundary conditions for RVE, (b) shows finite element mesh divisions
for L=1.0μm, L=2.0μm and L=3.0μm. Here, location and volume fraction of rub-
ber particles (voids) are fixed. In the interface region, b-axis of crystalline lamella
is oriented to the normal direction to the rubber particle/semi-crystalline polymer
interface as shown in Fig. 1(a), which causes anisotropic deformation in interface
region.

In this paper, the effect of mesostructure size L and macroscopic tensile strain
rate Ė on deformation behavior of rubber blended semi-crystalline polymer is in-
vestigated. Table 1 shows simulation conditions. For three different sizes of meso-
structure shown in Fig. 1(b), tensile deformation of three different strain rate,
Ė = 1.0×10−3, Ė = 1.0×10−2 and Ė = 1.0×10−1are applied, respectively. The
material parameters for HDPE are described in refs.[8, 11].

Result and Discussion
Figure 2 shows relationships between macroscopic true stress and strain for all

conditions in Table 1. Macroscopic stress strain relation of rubber blended semi-
crystalline polymer shows no clear yielding behavior which is attributable to the
continuous local yielding in the mesoscopic area caused by the heterogeneity of
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Figure 1: Computational model

mesoscopic morphology. Macroscopic response depends on not only tensile strain
rate but also rubber particle size. In the earlier stage of deformation, the slope of
stress-strain relation changes by rubber particle size while stress in the following
deformation is mainly affected by macroscopic tensile strain rate. With the de-
crease in size of rubber particles, local yielding is promoted by heterogeneity of
lamellar oriented interface region. This leads to lower stress in the earlier stage of
deformation for smaller sized rubber particles blended polymers.

Figure 2: Macroscopic true stress vs. strain

Figure 3 shows equivalent strain distributions at different degree of deforma-
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Table 1: Simulation conditions
Condition Length of RVE, L [μm] Macroscopic tensile strain rate, Ė

1 1×10−3

2 1.0 1×10−2

3 1×10−1

4 1×10−3

5 2.0 1×10−2

6 1×10−1

7 1×10−3

8 3.0 1×10−2

9 1×10−1

tion for macroscopic tensile strain rates Ė = (a) 1.0×10−3 and (b) 1.0×10−1. In
Figs.3 (a) and (b), upper and lower figures show L=0.10μm and L=0.30μm, respec-
tively. With the increase of macroscopic strain, locally strained zones appear in the
mesostructure, and degree of equivalent strain in the interface region is larger than
that of isotropic matrix.

Figure 3: Equivalent strain distribution

Comparison between the results for L=0.10μm and L=0.30μm shows the slight
difference of equivalent strain distribution. In the case of L=0.10μm, locally strained
zone appears along ±45 directions to connect rubber particles. On the other hand,
equivalent strain in the case of L=0.30μm tends to concentrate at the ligament re-
gion normal to the tensile load. This tendency is seen in both of Ė = 1.0×10−3 and
1.0×10−1. This result is caused by the anisotropic deformation behavior of lamel-
lar oriented interface region. Shearing deformation in amorphous phase and slip
deformation in crystalline phase are easy to cause along ±45 directions in interface
region. As a result, localized deformations along those directions are markedly in-
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tensified with the increase in volume fraction of lamellar oriented interface region,
namely decrease in ligament thickness between rubber particles.
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