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FDMFS for Diffusion Equation with Unsteady Forcing
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Summary
In this paper, a novel numerical scheme called (FDMFS), which combines the

finite difference method (FDM) and the method of fundamental solutions (MFS),
is proposed to simulate the nonhomogeneous diffusion problem with an unsteady
forcing function. Most meshless methods are confined to the investigations of non-
homogeneous diffusion equations with steady forcing functions due to the diffi-
culty to find an unsteady particular solution. Therefore, we proposed a FDM with
Cartesian grid to handle the unsteady nonhomogeneous term of the equations. The
numerical solution in FDMFS is decomposed into a particular solution and a ho-
mogeneous solution. The particular solution is constructed using the FDM in an
artificial regular domain which contains the real irregular domain without bound-
ary conditions, and the homogeneous solution can be obtained by the time-space
unification MFS in the irregular domain with boundary conditions. Besides, the
Cartesian grid for particular solution is very simple to generate automatically. Our
paper is the first time to propose an algorithm to solve nonhomogeneous diffusion
equations with unsteady forcing functions using MFS to solve homogeneous so-
lutions and FDM to calculate the particular solutions. Numerical experiments are
presented for 2D problems in regular and irregular domains to show the high per-
formance of this proposed scheme. Moreover, the stabilities of explicit and implicit
FDM for particular solution are analyzed. Numerical studies suggest that the pro-
posed FDMFS can speed up the simulation and save the CPU time and memory
storage substantially.

keywords: meshless; unsteady forcing function; nonhomogeneous diffusion
equation; method of fundamental solutions; finite difference method; FDMFS.

Introduction
The diffusion equations are very important subjects for sciences and engineer-

ing and usually applied to describe the problems of heat transfer, pollution trans-
ports, chemical processes, etc. Some external input of energy is represented in the
form of a forcing function by the nonhomogeneous term. Classical numerical meth-
ods, such as FDM, finite element method (FEM) and finite volume method (FVM),
had been extensively adopted to simulate the diffusion equations. However, all of
them are mesh-dependent methods which need mesh generation. The FDM needs
the coordinate transformations to treat irregular domain problems. The associated
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bookkeeping of the elements and nodes is also cumbersome and expensive in the
CPU time and computer memory for the FEM and FVM. Recently, there are a lot
of researchers developed the simpler meshless or meshfree methods to solve the
diffusion equations.

Meshless numerical method is a new developed tool for solving irregular do-
main and homogeneous problems. As the name implies, the meshless methods
only require nodes for boundary and initial conditions instead of mesh. The MFS,
also known as F-Treffz method or singularity method was originally presented by
Kupradze and Aleksidze (1964). In previous studies, the MFS was applied widely
to simulate a lot of physical problems, for example the Helmholtz equations [Chen,
Fan, Young, Murugesan and Tsai (2005), Young and Ruan (2005), Chen, Chen and
Kao (2006)]; potential problems [Liu, Nishimura and Yao (2005), Young, Chen,
Chen and Kao (2007)]; Stokes flows [Tsai, Young and Cheng (2002), Young, Chiu,
Fan, Tsai and Lin (2006), Young, Jane, Fan, Murugesan and Tsai (2006)] and dif-
fusion problems [Young, Tsai and Fan (2004), Hu, Fan, Chen and Young (2005)].

There are a lot of researches on meshless methods for diffusion problems,
such as radial basis functions (RBFs) collocation method or the Kansa’s method
[Kansa (1990)]; indirect radial basis function network (IRBFN) method [Mai-Cao
and Tran-Cong (2005)]; meshless local Petrov-Galerkin (MLPG) method [Lin and
Atluri (2000), Sladek, Sladek and Tanaka (2005)] and the MFS [Chen, Golberg
and Hon (1998a), Young, Tsai, Murugesan, Fan and Chen (2004), Cho, Golberg,
Muleshkov and Li (2004)]. MFS utilizes the fundamental solutions of PDEs and
can reduce one dimensionality of the problem. Therefore, it is very popular and
powerful in the realm of computational sciences.

For solving homogeneous diffusion equations by MFS, it is usual to employ the
finite difference discretization or Laplace transform to deal with the time deriva-
tive. Golberg and Chen (1998) used the MFS based on modified Helmholtz fun-
damental solution to simulate the nonhomogeneous term via associating with the
dual reciprocity method (DRM). The Chebyshev interpolation functions [Golberg,
Muleshkov, Chen and Cheng (2003)] are also suggested to approximate the right-
hand side of modified Helmholtz equations for diffusion problems. Instead of using
the finite difference scheme or the Laplace transform to deal with the time deriva-
tive term in diffusion equation, the time-dependent diffusion fundamental solution
can be used directly by the MFS for the homogeneous diffusion solutions [Young,
Tsai, Murugesan, Fan and Chen (2004), Hon and Wei (2005)].

In fact, the MFS is only effective at solving homogeneous PDEs. In order to ex-
tend the MFS to solve nonhomogeneous PDEs, we have to combine MFS with other
discretized numerical schemes such as stated in the followings. When the PDEs
have steady forcing functions, Burgess and Mahaherin (1987) constructed the par-
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ticular solutions by direct numerical domain integration. Besides, Chen (1995) and
Chen, Golberg and Hon (1998b) employed the quasi-Monte Carlo (QMC) quadra-
ture as numerical integration to find the particular solutions. Golberg (1995) sug-
gested the MFS to solve Poisson’s equation by approximating the forcing function
using thin plate splines (TPSs). Thereafter the MFS is extended to nonhomoge-
neous PDEs with steady forcing function commonly by combining the DRM where
the steady forcing function is approximated by a finite series of RBFs [Balakrishnan
and Ramachandran (2001), Alves and Chen (2005), Wang, Qin and Kang (2005)].
Young, Tsai and Fan (2004) extended the time-dependent diffusion MFS-DRM
model to solve multidimensional nonhomogeneous diffusion problems and they
also gave a comparison between their proposed scheme and Golberg and Chen’s
researches (1998). Recently, Young, Chen, Fan and Tsai (2006) proposed another
numerical scheme (MFS-MPS-EEM), which combines the MFS, the method of par-
ticular solutions (MPS) and eigenfunction expansion method (EEM), to simulate
the diffusion equation. Unfortunately, all of these methods can not be applied di-
rectly for nonhomogeneous diffusion problems with time-dependent forcing func-
tions.

As far as the unsteady force functions are concerned there is still no literature
available. We thereby in this paper first propose the time-dependent MFS for non-
homogeneous diffusion equation and combined with FDM to take care unsteady
forcing functions. The solution of a nonhomogeneous PDE can be split into the
summation of a particular solution and a homogeneous solution by the linear super-
position theory. We will use the FDM to solve the particular solution in an artificial
Cartesian grid which contains the physical domain without considering boundary
conditions; and the time-dependent diffusion MFS to solve the homogeneous so-
lutions with boundary conditions in physical domain. In other words, the FDM is
performed in an artificial regular domain to handle the unsteady forcing function;
in the meantime, the homogeneous diffusion equation can be analyzed by the MFS
free from mesh generation and numerical quadrature in an irregular physical do-
main. Those are the strong features respectively for both the meshless MFS and
mesh FDM. The concept is similar to the research of Chantasiriwan (2004) who
combined the FDM and MFS to solve the steady Poisson problem. If we directly
use the FDM to solve the nonhomogeneous diffusion equations we have to face a
difficulty to handle the irregular domain problem which is not a trivial task as far
as coordinate transform is concerned, see the Section 4.2 and appendix for details.
In other words we have made use of both the advantages of meshless method to
solve the homogeneous solution and the discretized FDM to calculate the particu-
lar solution in order to deal with the more complicated nonhomogeneous diffusion
equations with unsteady forcing functions.



332 Copyright c© 2008 ICCES Proceedings of ICCES’08, pp.329-354

The aim of this study is to demonstrate the capability of the proposed FDMFS
for nonhomogeneous diffusion equation with unsteady forcing functions. The gov-
erning equations and numerical methods will be explained in sections 2 and 3,
respectively. We also give a detailed discussion on processing for forcing function
for irregular-domain problem in section 3.2. The numerical results and conclusions
will be provided separately in sections 4 and 5. There are six problems adopted in
the paper and the numerical results are compared well with the analytical solutions.

Governing Equations
The diffusion equation with unsteady forcing function over the problem domain

Ω with boundary Γ can be written as follows:

∂T (�x, t)
∂ t

= k∇2T (�x, t)+F(�x, t) (1)

where�x is the general spatial coordinate, t is the time coordinate, k is the diffusion
coefficient, F(�x, t) is the unsteady forcing function, and T (�x, t) is the scalar variable
to be determined. The initial condition of the problem is

T (�x, t0) = f1 (�x) in Ω (2)

with the Dirichlet and Neumann boundary conditions.

T (�x, t) = f2 (�x, t) in Γ1 (3)

∂
∂n

T (�x, t) = f3 (�x, t) in Γ2 (4)

where Ω is the problem domain, Γ1 +Γ2 is equal to the boundary Γ, n is the outward
normal direction and f1 (�x) , f2 (�x, t) , f3 (�x, t) are known functions. t0 is the initial
time.

Through the MPSMFS [Young, Tsai and Fan (2004)] or the MFS-MPS-EEM
models [Young, Chen, Fan and Tsai (2006)], the diffusion equation with steady
forcing function can be solved directly. However, both of this two time-dependent
MFS schemes can not simulate the diffusion equation with unsteady forcing func-
tion. Therefore, we propose the FDMFS to analyze the diffusion problem with
unsteady forcing function.

Numerical Method
Basic numerical scheme

The solution T (�x, t) can be written as the linear combination of a homogeneous
solution Th(�x, t) and a particular solution Tp(�x, t)b shown as follows:

T (�x, t) = Th(�x, t)+Tp(�x, t) (5)
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The particular solution is obtained from the nonhomogeneous equation as shown
below:

∂Tp(�x, t)
∂ t

−k∇2Tp(�x, t) = F(�x, t) (6)

No boundary condition has to be satisfied and initial condition can be set as
an arbitrary function; the homogeneous solution is obtained from the following
homogeneous equation:

∂Th(�x, t)
∂ t

−k∇2Th(�x, t) = 0 (7)

with the modified initial condition

Th(�x, t0) = f1 (�x)−Tp(�x, t0) in Ω (8)

and the modified Dirichlet and Neumann boundary conditions.

Th(�x, t) = f2 (�x, t)−Tp(�x, t) in Γ1 (9)

∂
∂n

Th(�x, t) = f3 (�x, t)− ∂
∂n

Tp(�x, t) in Γ2 (10)

The numerical procedures start from the particular solution. First of all, as
shown in Fig. 1 (a)-(b), we need to distribute a Cartesian grid (ΩC) which has to
contain the problem domain (Ω).

   (a)                            (b)                             (c) 

Figure 1: (a) Problem domain (Ω), (b) Cartesian grid for FDM (ΩC), (c) node
distribution for MFS



334 Copyright c© 2008 ICCES Proceedings of ICCES’08, pp.329-354

Next, we can use the fully explicit FDM to simulate the particular solution by
Eq. (6).

T n+1
p (�x, t) = T n

p (�x, t)+Δt

[
k

(
T n

p,i+1, j(�x, t)−2T n
p,i, j(�x, t)+Tn

p,i−1, j(�x, t)

(Δx)
2

)]

+Δt

[
k

(
T n

p,i, j+1(�x, t)−2Tn
p,i, j(�x, t)+T n

p,i, j−1(�x, t)

(Δy)
2

)]
+Δt (Fn(�x, t)) (11)

where Δt = Δtp is the time step size for particular solution, Δx is the mesh size in x
direction and Δy is the mesh size in y direction. Indeed, the implicit FDM also can
be adopted to obtain the particular solution

T n+1
p (�x, t)−Δt

{
k

(
T n+1

p,i+1, j(�x, t)−2T n+1
p,i, j (�x, t)+T n+1

p,i−1, j(�x, t)

(Δx)
2

)}

−Δt

{
k

(
T n+1

p,i, j+1(�x, t)−2Tn+1
p,i, j (�x, t)+T n+1

p,i, j−1(�x, t)

(Δy)
2

)}
= T n

p (�x, t)+Δt (Fn(�x, t))

(12)

The initial condition of the particular solution is assumed to be an arbitrary
function and the boundary condition of the particular solutions is not required. By
the advantages of explicit FDM, the particular solution can be obtained in a very
short time and no matrix solver is needed.

After the particular solution is obtained, the meshless MFS is considered to
solve the homogenous solution. The homogeneous solution satisfies the linear dif-
fusion equations, Eq. (7), and the modified initial and boundary conditions, Eqs.
(8)-(10). In the MFS, the diffusion solution can be represented as the linear combi-
nation of the diffusion fundamental solutions with different intensities. The funda-
mental solution of the linear diffusion equation is governed by

∂G
(
�x, t;�ξ ,τ

)
∂ t

= k∇2G
(
�x, t;�ξ ,τ

)
+δ

(
�x−�ξ

)
δ (t−τ) (13)

where G
(
�x, t;�ξ ,τ

)
is the fundamental solution of the diffusion equation. �x = (x,y)

and �ξ = (ξ ,η) are the spatial coordinates of the field point and source point, as t
and τ are the temporal coordinates of the field point and source point. δ ( ) is the
well-known Dirac delta function.
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By using the integral transform theory of the above equation, the free-space
Green’s function or the fundamental solution of the diffusion equation can be ob-
tained [Kythe (1996)]:

G
(
�x, t;�ξ ,τ

)
=

e−
|�x−�ξ|2
4k(t−τ )

(4πk (t −τ))d/2
H (t −τ) (14)

where d is the spatial dimension and equal to two in this study. H () is the Heaviside
step function.

Based on the time-dependent MFS, the homogeneous solution can be expressed
as the linear combination of the diffusion fundamental solutions

Th (�x, t) =
Nh

∑
j=1

α jG
(
�x, t;�ξ j,τ j

)
(15)

where Nh is the number of source points. In our numerical experiments, the num-
bers of field points and source points are chosen as the same, N = Nh, so that a
square matrix equation can be formed. α j are the unknown coefficients which de-
note the source intensities of the corresponding fundamental solutions.

The initial and boundary conditions of homogeneous solution are modified by
the particular solution:

Th(�x, t0) = T (�x, t0)−Tp(�x, t0) = f1 (�x)−Tp(�x, t0) in Ω (16)

Th(�x, t) = T (�x, t)−Tp(�x, t) = f2 (�x, t)−Tp(�x, t) in Γ1 (17)

∂
∂n

Th(�x, t) =
∂
∂n

T (�x, t)− ∂
∂n

Tp(�x, t) = f3 (�x, t)− ∂
∂n

Tp(�x, t) in Γ2 (18)

Applying the concept of the MFS, we obtain a matrix equation as follows:⎡
⎢⎢⎢⎣

G
(
�x, t0;�ξ j,τ j

)
G
(
�x, t;�ξ j,τ j

)
∂
∂n G

(
�x, t;�ξ j,τ j

)
⎤
⎥⎥⎥⎦{α j

}
=

⎧⎨
⎩

f1 (�x)−Tp(�x, t0)
f2 (�x, t)−Tp(�x, t)

f3 (�x, t)− ∂
∂n Tp(�x, t)

⎫⎬
⎭ (19)

Solving the above matrix equation, the coefficients α jare obtained, and then
the homogeneous solutions can be acquired by Eq. (15). Finally, the numerical
solutions can be obtained by summing up the particular and homogeneous solutions
of Eq. (5).

As shown in Fig. 1 (c), the meshless MFS requires only field points for bound-
ary and initial conditions without mesh. The locations of field and source points of
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MFS are illustrated as Fig. 2, and the field and source points are located at the same
spatial positions but different time levels. In Fig. 2 (a), the parameter, λ , is cho-
sen as a function of the maximum distance of the spatial domain (R) and it can be
expressed as λ (Δt) = μR. μ is an adaptive parameter which can be chosen by the
trial and error process and is equal to 0.5 in this study. More detailed discussions
on this formula can be found in a previous research [Young, Fan, Hu and Atluri
(2007)].

Although, the time increment of FDM scheme Δtp should satisfy the stability
condition, the homogeneous solution does not need to be solved at each time step.
In other words, the time interval for the MFS can use a large one. In this paper,
we adopt Δth = 10Δtp, Δth = 100Δtp or Δth = 1000Δtp. Therefore, the CPU time of
the simulation can be shortened. In order to demonstrate the idea of FDMFS more
simply and clearly, the illustration of the proposed numerical procedures are shown
as Fig. 3.

(a) (b)

Figure 2: Schematic diagram of source and field points for the MFS based on diffu-
sion fundamental solution (a) in a time-space coordinate (b) in a space coordinate

Manipulation in irregular domain
The present numerical scheme can solve problems with irregular domain di-

rectly. For solving particular solutions by FDM, we set a simple uniform Cartesian
grid (ΩC) which covers the whole problem domain (Ω) as a computational domain
for particular solution. The Cartesian grid (ΩC) can be divided into two parts. One
(ΩC

i ) is the interior of the problem domain (Ω). The other one (ΩC
e ) is exterior of

the problem domain (Ω). The particular solution at each point is governed by Eq.
(6). However, we will encounter a problem that the forcing function on ΩC

e is un-
known in most practical problems. Therefore, we proposed three different schemes
illustrated as Fig. 4 to overcome this issue. The accuracy and efficiency of these
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methods are compared with each other in section 4.2.

Figure 3: The illustration of the proposed numerical scheme (FDMFS)

Figure 4: The illustration of three schemes (M1, M2 and M3) to deal with the
particular solutions

Method 1 (M1)
Provided that the forcing function of the problem is spatial-independent or the

forcing function on ΩC
e is known, the governing equation, Eq (6), can be applied

without problem. In other words, we use the same FDM to discretize the non-
homogeneous diffusion equation to obtain the particular solution on both ΩC

e and
ΩC

i . The FDM scheme is the same as the FDM for a nonhomogeneous diffusion
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problem with a rectangular domain.

The idea of this method is simple and no extra computer code is required.
This method has high accuracy due to no unreasonable assumptions. The virtual
Cartesian grid for particular solution can be constructed automatically by known
maximum and minimum value on each coordinate. This work will not affect the
efficiency of the numerical scheme. However, this method is only suitable for the
case which the forcing function is spatial-independent or the forcing function on
ΩC

e is known. Otherwise, we need to consider M2 or M3.

Method 2 (M2)
We can assume that this forcing function exterior the problem domain is equal

to a constant, zero or a known physical value on the boundary. Therefore, the
forcing function will appear a discontinuity near the boundary. Due to the nature
of the FDM, the discontinuity will produce errors near the boundary and pollute
the numerical results. Hence, we interpolate the forcing functions on the exterior
domain (ΩC

e ) in order to smooth the forcing function on the Cartesian grid (ΩC).
If the forcing function on the computational domain for particular solution (ΩC)
is discontinuous, numerical error would be produced. To put it simply enough,
the basic idea of M2 is to create a smooth forcing function to make sure that the
numerical scheme for particular solution can be applied successfully.

In most practical problem, the problem domain is usually irregular and the
forcing function outside the problem domain is unknown definitely. The M2 is
developed to deal with this kind of problems. The unknown forcing function on ΩC

e

is set as a constant. The constant value can be defined through the system program
and interpolations can be adopted to smooth the forcing function. This work needs
to add computer code and set a rule to avoid discontinuous forcing function on the
computational domain (ΩC) for the particular solution. The scheme would increase
the CPU time of the simulation. However, this approach conforms to the practice
problem mostly.

Method 3 (M3)
In M3, we divide the numerical scheme into two parts. One is for nodes on the

interior domain (ΩC
i ). The particular solution is obtained by the original governing

equation, Eq. (6). The other one is for nodes on the exterior domain (ΩC
e ). The

particular solution is equal to previous step without calculating on ΩC
e . We do not

care the particular solution on the non-real domain (ΩC
e ) in this method. However,

some numerical error is caused by the inaccurate particular solution on the bound-
ary. This method can speed up the numerical scheme due to not calculating the
particular solution on the non-real domain (ΩC

e ).

After the brief introduction of the three methods, we can expect that the M1
has high accuracy; M2 is the most useful one; M3 can obtain the rough numerical
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results in a short time. The detailed comparisons of these three methods will be
performed in the following section.

Numerical Experiments and Results
To illustrate the performance of the numerical scheme, we performed several

numerical experiments listed in Tab. 1. There are six testing case studies in this pa-
per. The former three cases are regular domain problems. In case 1, we considered a
diffusion problem with a steady forcing function. Case 2 shows the convergence of
this proposed numerical scheme and case 3 applies this method to simulate prob-
lems of k=10, 1 and 0.01. To show the advantages of meshless method, the last
three cases are irregular domain problems. All irregular domain problems adopted
these three different schemes mentioned on section 3.2 for particular solution and
the detailed discussions of the three different methods are drawn based on the nu-
merical results. The efficiency of FDM and FDMFS are compared with each other
in problems of regular and irregular domains.

Table 1: All numerical experiments

Domain Case Forcing function ( , )F x t

Forcing

function 

depends 

on

Issue 

Regular domains 

Case 1 ( )( , ) 6 6 2 12F x t x y= − + + yx, * The efficiency of  

different numerical 

schemes  

Case 2 ( )( , ) 2  Cos 2  F x t tπ π= t * The convergence of    

FDMFS

* Performance of the 

proposed scheme for 

problem with 

Neumann B.C.  
0 0.5 1

0

0.5

1

Case 3 ( )( ) ( )
( ) ( )

2 2

2 2

( , ) 2 1 1 Cos 2  

              2 2  Sin 2  

F x t x y t

k x y t

π π

π

= − −

− + −

tyx ,, * Tests on different 

diffusion coefficient 

Irregular domains 

Case 4 ( )( , ) 2  Cos 2  F x t tπ π= t

0 0.5 1
0

0.5

1

Case 5 ( )( ) ( )
( ) ( )

2 2

2 2

( , ) 2 1 1 Cos 2  

              2 2  Sin 2  

F x t x y t

k x y t

π π

π

= − −

− + −

tyx ,,

0.25 0.5 0.75
0

0.5

1

Case 6 ( )( ) ( )
( ) ( )

2 2

2 2

( , ) 2 1 1 Cos 2  

              2 2  Sin 2  

F x t x y t

k x y t

π π

π

= − −

− + −

tyx ,,

* Tests on the proposed 

suggestions 

(M1,M2,M3) for 

problems in  irregular 

domain  
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Table 2: The comparisons for CPU time and required memory for different methods
for case 1

Method
CPU

Time(sec)
Memory(KB)

Explicit FDM 0.3 1480

Implicit FDM 1.5 1576

Explicit FDMFS 1.7 1756

Implicit FDMFS 2.5 1824

MPSMFS 8.3 2344

Node Δt

N=11x11

Np=11x11 Nh=11x11

Δt=10
-3

Δtp=10
-3 Δth=10

-2

Regular domains
Case 1: Steady forcing function

In this case, the forcing function only depends on the spatial coordinates.

F(�x, t) = −(6x+6y+2)/12 (20)

The analytical solution is

T (�x, t) = 2 [cos(πx)+ sin(πy)]e−kπ2t +
(
x3 +y3 +x2 +y

)
/12+10 (21)

Here, the diffusion coefficient k is equal to 1. Figure 5 (a) shows the time
variations of the maximum and minimum temperature in the square domain with
the explicit FDMFS (with 11×11 Cartesian grid for particular solution, 121 MFS
nodes, time step size for particular solution Δtp = 10−3 and time step size for ho-
mogeneous solution Δth = 10−2). This simple case can be solved by conventional
FDM and another meshless method, MPSMFS [Young, Tsai and Fan (2004)]. Fig-
ure 5 (b) depicts the maximum relative errors of five different numerical methods.
According to those results, all of those methods can obtain reasonable solutions.
No matter explicit or fully implicit FDMFS scheme, the numerical solutions have
high accuracy and the error distributions are very small. The efficiency of the five
numerical methods is listed in Tab. 2. Explicit FDM can give numerical solution in
a very short time; nevertheless, the MPSMFS spends a lot of time on solving full
matrix. In addition, the meshless MPSMFS only can be used to solve PDEs with
steady forcing function. Therefore it can not be applied for other unsteady-forcing-
function cases. Although the meshless FDMFS also needs to solve the full matrix,
the domain decomposition technique can overcome this issue. This simple case
proves that the present numerical scheme can solve the nonhomogeneous diffusion
problem successfully and accurately.

Case 2: forcing function depends on t and Neumann boundary condition is considered
We next consider the forcing function, which is an oscillation function and

dependent on t, as follows:

F(�x, t) = 2π cos (2πt) (22)
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Table 3: The comparisons for CPU time and required memory for different methods
for case 2 y

Method
CPU

Time(sec)
Memory(KB)

Explicit FDM 0.6 1480

Implicit FDM 2 1576

Explicit FDMFS 1.7 1756

Implicit FDMFS 2.4 1824

MPSMFS 8.3 2344

Np=11x11 Nh=11x11

Node Δt

N=11x11 Δt=10
-3

Δtp=10
-3 Δth=10

-2

The analytical solution is

T (�x, t) = (sin(πx)+ sin(πy))e−kπ2t + sin(2πt)+5 (23)

Figure 6 (a) shows the maximum and minimum solution by explicit FDMFS
(with 11×11 Cartesian grid for particular solution, 121 MFS nodes, Δtp = 10−3

and Δth = 10−2). The numerical solutions are in good agreement with analytical
solutions. In Fig. 6 (b), the maximum relative errors of T by five different numeri-
cal schemes are plotted. The MPSMFS is applied to this problem by assuming the
quasi-steady particular solutions. Therefore the numerical solutions of MPSMFS
have a greater error shown in Fig. 6 (b). Yet the results using the FDMFS are quite
good, with less than 0.03% relative error in both explicit and fully implicit schemes.
In Tab. 3, we list the CPU time and memory cost of these simulations. As the table
shown, conventional FDM has high efficiency in regular domain problem. The ad-
vantage of the FDMFS can be demonstrated in irregular domain problem, because
it does not need the coordinate transformation which the conventional FDM needs.

The consistency and stability analysis of FDMFS is also included in this study.
Figures 7 (a)-(c) depict the error histogram for different time increments and dif-
ferent numbers of points, in which smaller time increments and more points will
give better results as expected. In Fig. 7 (a) we use fixed time increments for ho-
mogeneous solutions and change the time increments for particular solutions. As
the figure shows, the smaller time increments induce better numerical solutions.
We can obtain the same conclusions in Fig. 7 (b) with a changed time increments
for homogeneous solutions and fixed the time increments for particular solutions.
Lastly the Fig. 7 (c) shows that the number of MFS nodes will not influence the
accuracy of the proposed scheme in the studying range.

A problem with Neumann boundary condition is also considered to test the
proposed scheme. Let the boundary condition at y=1 is a Neumann boundary con-
dition:

∂T (x, t)/∂n = −πe−kπ2t (24)

The relative error is shown in Fig. 8 in which the error is less than 0.05%.
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Figure 6: Time history of (a) maxi-
mum and minimum values of T and
(b) maximum relative error for case 2
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Figure 7: : Time history of maximum relative error (a) with different time incre-
ments for particular solution (b) with different time increments for homogeneous
solution (c) with different number of MFS nodes for case 2

Case 3: forcing function depends on x, y, t
In case 3, we consider the forcing function is dependent on x,y, and t. The
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Figure 8: Time history of maximum relative error for problem with Neumann
boundary condition at y=1 for case 2

analytical solution is shown as follows:

T (�x, t) = 10+(sin(πx)+ sin(πy))e−kπ2t +(1+x) (1−x)(1+y) (1−y) sin(2πt)
(25)

and the forcing function is

F(�x, t) = 2π
(
x2 −1

)(
y2 −1

)
cos (2πt)−2k

(
x2 +y2 −2

)
sin(2πt) (26)

The numerical results (black solid line) at t=0.1 and t= 0.25 shown in Fig. 9
agree well with the analytical solutions (red dashed line).
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(a) t=0.10                     (b) t=0.25 

Figure 9: Contour maps of temperature for case 3 for k=1

We use this case to test the proposed meshless scheme for problems with dif-
ferent diffusion coefficient. Figure 10 (a) shows the time history of maximum and
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minimum temperature by explicit FDMFS for k=10, 1, and 0.01. As we can see,
the results generally are in good agreement with analytical solutions. When k=10,
the phenomena of diffusion process change quickly, as a result a smaller time in-
crement is needed. The maximum relative error shown in Fig. 10 (b) is less than
0.05%. This case shows the present scheme is easy to handle problems with differ-
ent diffusion coefficients.
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Figure 10: Time history of maximum and minimum temperatures for case 3 when
k=10, k=1 and k=0.01

Irregular domains
To illustrate the advantages of the proposed meshless scheme, there are three

cases tested with irregular domains. Case 4 and 5 demonstrate the application of
FDMFS for circular domains. A twin circle domain problem is adopted in case
6. Each case has comparisons of required CPU time between the FDM and the
FDMFS. Because the conventional FDM can not directly solve irregular domain
problem, we adopt the boundary-fitted coordinate (BFC) transformation method
[Lee and Leap (1994)] for the coordinate transformation. Brief descriptions of
BFC transformation that we used are given in Appendix.

Case 4: forcing function depends on t
In this case, we consider the problem of a circular domain and the same analyt-
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ical solution as case 2. Figure 11 (a) plots the time history of numerical results at
(x,y)=(0.5,0.5) by M1, M2 and M3 and the numerical results show good agreement
with analytical solutions. The maximum relative errors of the numerical results by
explicit and implicit FDMFS schemes with different methods for handling of irreg-
ular domain are shown in Fig 11 (b). As we expect, the accuracy of these results is
almost in the same order and M1 has the best numerical results due to the spatial-
independent forcing function is considered. Table 4 lists the number of nodes and
time increment in the test and shows the comparisons of CPU time and memory
between FDM and FDMFS. As the table shows, the coordinate transformation pro-
cess needs 30 seconds of CPU time and 16,120 KB for memory storage. On the
contrary, the FDMFS scheme obtains the numerical results in a very short time and
saves a lot of memory, especially for explicit FDMFS scheme.
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Figure 11: Time history of (a) temperature at (0.5, 0.5) and (b) maximum relative
error for case 4 for k=1

Case 5: forcing function depends on x,y, t
The analytical solution of case 5 is the same as case 3. The forcing function

is dependent on x,y and t. Figure 12 (a) plots the time history of numerical results
at (x,y)=(0.5,0.5) by M1, M2 and M3 and shows good agreement with analytical
solutions. Fig. 12 (b) shows that the maximum relative error of M1, M2 and M3
are all less than 0.1%. The contour maps are shown in Fig. 13 for k=1 at t=0.1 ant
t=0.25. These three methods for handling the irregular domain problem can pro-
duce reasonable results for arbitrary domain problems. Moreover, the comparisons
of CPU time and memory between FDM and FDMFS are also listed on Tab. 5.
In this case, the FDMFS needs finer mesh for particular solutions, because using
the Cartesian grid for particular solutions needs more nodes to fit the unsteady and
space-dependent forcing function. On the other hand, since the governing equation
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Table 4: The comparisons for CPU time and required memory for different methods
for case 4 p q y

CPU Time(sec)

total time

(after mapping

process)

Memory(KB)

total cost

(after mapping

process)

45.0 (14.3) 16120 (8952)

52.3 (21.6) 16120 (9120)

M1 7.7 1924

M2 15.7 1924

M3 7.3 1924

M1 58.1 2148

M2 73.5 2160

M3 24.6 2132

Δtp=10
-4

Δtp=10
-3

Method

Δt=10
-3

Δt=10
-4

FDMFS

Explicit 

Implicit 

Explicit FDM

Implicit FDM

Np=41x41 Nh=144 Δth=10
-2

Node Δt

N=31x31

has been transformed and the extra coefficients of each term have been stored, the
FDM scheme consumes a lot memory not only in mapping process but also in com-
puting process. In contrast, the FDMFS is implemented without mapping process,
so it can save memory significantly.
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Figure 12: Time history of (a) temperature at (0.5, 0.5) and (b) maximum relative
error for case 5 for k=1

Case 6: forcing function depends on x,y, t
The last case is to simulate a twin circle domain problem. The analytical solu-

tion is chosen the same as case 3 and k=1. The maximum relative error is depicted
in Fig. 14 and all of them are less than 0.2%. Moreover, Fig. 15 shows the con-
tour maps via M1, M2 and M3 when t=0.10 and t=0.25. From this figure, we find
the M3 has some error due to the discontinuity of the forcing function near the
boundary. Furthermore, the comparisons of efficiency between FDM and FDMFS
are provided in Tab. 6. In this case, the FDM based on BFC transformation uses a
coarse mesh and a very small time step (Δt = 10−6) such that the simulation costs
more CPU time. In addition, the memory storage for FDM scheme is still large. On
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Figure 13: Contour maps of temperature for case 5

the other hand, the FDMFS based on M1 or M3 can obtain the numerical results
in a very short time and require less memory. The FDMFS based on M2 is more
time-consuming and it requires a finer Cartesian grid for particular solutions.
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Figure 14: Time history of maximum relative error for case 6

Conclusions
The nonhomogeneous diffusion equation with unsteady forcing function is an-

alyzed by the proposed FDMFS which is the combination of the conventional FDM
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Table 5: The comparisons for CPU time and required memory for different methods
for case 5

CPU Time(sec)

total time

(after mapping

process)

Memory(KB)

total cost

(after mapping

process)

173.1(142.33) 16148(9140)

M1 370.5 2064

M2 881.9 2064

M3 274.6 2064

Method

Explicit FDM

FDMFS Explicit Np=81x81 Nh=144 Δtp=10
-5 Δth=10

-2

Node Δt

N=31x31 Δt=10
-5

Figure 15: Contour maps of temperature for case 6 using different methods for
particular solution

using simple grid and the meshless MFS. The solutions are assumed as the com-
bination of particular solutions and homogeneous solutions. The FDM is applied
to solve the particular solutions by a simple Cartesian grid which covers the whole
physical domain. On the other hand, the homogeneous solution which is governed
by the linear diffusion equation is solved by time-dependent MFS. Finally, the nu-
merical solutions are obtained by summing the particular solutions and homoge-
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Table 6: The comparisons for CPU time and required memory for different methods
for case 6

CPU Time(sec)

total time

(after mapping

process)

Memory(KB)

total cost

(after mapping

process)

173.1(142.33) 16148(9140)

M1 370.5 2064

M2 881.9 2064

M3 274.6 2064

Method

Explicit FDM

FDMFS Explicit Np=81x81 Nh=144 Δtp=10
-5 Δth=10

-2

Node Δt

N=31x31 Δt=10
-5

neous solutions. The present numerical scheme can solve the nonhomogeneous
diffusion equation with a time-dependent forcing function successfully. In addi-
tion, the boundary conditions for particular solution are not required and the initial
conditions for particular solution can be assumed as an arbitrary function in the
present scheme.

The proposed numerical scheme, FDMFS, is mainly aimed at diffusion prob-
lems with unsteady forcing function and in irregular domain. Since the forcing
function is unknown outside the real domain, we addressed three approaches to
deal with irregular domain problem for particular solution. From the numerical
tests, it shows that M1 has the highest accuracy, M2 is the most reasonable method
for the practical problems and M3 can get rough numerical solutions instantly. If
the unsteady forcing function is spatial-independent, we recommend M1 for the
particular solution. Otherwise, M2 is another good numerical scheme and com-
mended to be applied.

In the present scheme, the particular solution over the whole domain is satis-
fied by the nonhomogeneous equation. We only need to construct a Cartesian grid
covered the whole problem domain and the Cartesian grid for particular solution
is very simple to generate. Besides, the MFS is free from mesh generation and
numerical quadrature. Therefore the present scheme is very suitable and easy to
analyze the diffusion problem with irregular domains. The reason we suggest the
FDM to solve the particular solutions is that the scheme is very simple comparing
to other discretized methods found in the literature. In addition, if we adopt the
explicit FDM scheme, the matrix solver is not needed and numerical scheme can
be speeded up. The numerical results are compared well with the analytical solu-
tions. For future works, the FEM, differential quadrature (DQ) method also can
be considered to analyze the particular solution in the proposed numerical scheme.
The combination of the proposed FDMFS and Euler-Lagrangian method (ELM)
to solve the nonhomogeneous advection-diffusion equation is expected and will be
carried out in the near future.
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*
Appendix FDM based on Boundary-Fitted Coordinate (BFC) Transformation

for irregular domain

In this paper, the FDM solutions of irregular physical domain problem are
solved based on the BFC transformation. In BFC system, the physical domain
point (x,y) is correspondent with (X ,Y) and X = X (x,y), Y = Y (x,y). The BFC
transformation generates the computational grid (X ,Y) by solving the following
Poisson equation:

Xxx +Xyy = P(X ,Y) (27)

Yxx +Yyy = Q(X ,Y) (28)

where Pand Q are terms which control the point spacing on the interior of domain
and can be assumed as zero. Eqs. (27)-(28) are then transformed to computational
space by interchanging the roles of the independent and dependent variables. This
yields a system of two elliptic equations of the form

αxXX −2β xXY + γxYY = −J2 (PxX +QxY ) (29)

αyXX −2β yXY + γyYY = −J2 (PyX +QyY ) (30)

where

α = x2
Y +y2

Y (31)

β = xX xY +yX yY (32)

γ = x2
X +y2

X (33)

J =
∂ (x,y)
∂ (X ,Y)

= xX yY −xY yX (34)

By solving this system equation, the relation between (x,y) in Cartesian coor-
dinate and (X ,Y ) in BFC system is obtained. The structure grid (X ,Y ) as Fig. 16
(a)-(b) can be used in computational process instead of the physical mesh (x,y) as
Fig. 17 (a)-(b) for numerical experiment case 4 to case 6.

Moreover, the governing equation, Eq. (1), is transferred as following:

∂T
∂ t

= k

[
1
J2 (αTXX −2β TXY + γTYY )+ pTX +qTY

]
+F (35)

where α , β , γ , J are defined in Eq. (31)-(34), and

p = − 1
J3 yY (αxXX −2bxXY +cxYY )+

1
J3 xY (αyXX −2byXY +cyYY ) (36)

q =
1
J3 yX (αxXX −2bxXY +cxYY )− 1

J3 xX (αyXX −2byXY +cyYY ) (37)
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By discretizing the Eq. (36), the diffusion problem in irregular domain can be
solved by FDM scheme.

Figure 16: Computational domain and structure grid for (a) case 4 and 5 (b) case 6

Figure 17: Physical domain and generated grid for (a) case 4 and 5 (b) case 6


