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Solutions for Periodically Distributed Materials with
Localised Imperfections
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Summary
The behaviour of composite materials with periodically distributed constituents

is considered. Mathematically, this can be described by a boundary value problem
with highly oscillatory coefficient functions. An algorithm is proposed to handle
the case when the underlying periodicity is locally disturbed. This procedure is
constructed using fundamental concepts from homogenisation theory and domain
decomposition techniques. Applications to linearly elastic materials are consid-
ered.

Introduction
When dealing with materials with complex microstructures such as compos-

ites, the coefficients of the related PDEs vary so rapidly that applying classical
techniques such as finite elements or boundary elements methods becomes pro-
hibitively expensive. One may think for example of a material which consists of
two phases bonded together along the interface, the matrix and the inclusions. The
number of the latter is then typically very large. This makes for a very complex
problem to deal with from the numerical point of view.

One possible strategy to tackle this problem consists of employing domain de-
composition techniques. This allows the division of the computational domain into
smaller subdomains where the original equation is to be solved - see for example
[7].

A distinct approach may be adopted when it is further assumed that the ma-
terial is distributed in a periodic manner, with a small period ε . In spite of this
simplification, the usage of classical techniques is still not advisable. Indeed, to
obtain accurate results using finite element methods, one would have to ensure that
the element size of the mesh is taken very small, definitely smaller than ε - [5].
On the bright side, several techniques have been devised which solve this class of
problems, amongst which those suggested by the homogenisation theory [2], the
multiscale finite element methods [4] or the heterogeneous multiscale method [3].

The goal of this work is to analyse boundary value problems related to periodic
materials with localised imperfections. Mathematically, these are such that the co-
efficients of the PDEs have a highly oscillatory behaviour which is periodic with
period ε everywhere except for a small subdomain. In order to solve this problem
we propose an algorithm that borrows concepts from the techniques of domain de-
composition and of homogenisation. This is done for a one dimensional problem -
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which we omit here for the sake of brevity - and also for the two dimensional elas-
ticity problem. An accurate solution to the problem is then found with reasonably
small computational effort.

Periodic structure
Let us consider a composite material with constituents periodically distributed

over Ω. Assume that Ω is covered by a mosaic of cells of the form εY =]0,ε l1[×]0,ε l2[
over which the material is distributed as in the reference cell Y =]0, l1[×]0, l2[ - Fig-
ure 1.
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Figure 1: Representative cell.

We state the well-known linear elasticity problem for the composite material
as follows - cf. [2] -

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · (Aε(x)e(uε)) = f x ∈ Ω,

uε = 0 on ΓD,

σ (uε) ·n = gN on ΓN .

(1)

where gN is a vector function and e and σ are the strain and stress tensors, re-
spectively. The tensor Aε , which characterizes the behaviour of the material, can
be defined by extending the components of a fourth-order tensor Ã = Ã(y) =
(ãi jkh)1≤i, j,k,h≤2, defined over the reference cell Y , periodically to IR2. We de-
fine Aε = Aε(x) = (aε

i jkh)1≤i, j,k,h≤N such that for x = (x1, x2) ∈ IR2, one has

aε
i jkh(x) := ãi jkh(y) = ãi jkh(x/ε), where we denote y := x/ε , for y = (y1, y2) ∈ IR2.

We will now look at how to approximate the heterogeneous solution uε of (1). Con-
sider the following ansatz

uε(x,y) = u0(x,y)+εu1(x,y)+ε2u2(x,y)+ . . . . (2)

Here, ui, i = 1, 2, . . . are periodic functions in y = x/ε . Following [1] it can
be shown that when we take the first three terms of this expansion into account and
insert them in the differential equation in (1) we conclude that u0 depends only on
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x, ie. u0 = u(x) = (u1(x), u2(x)). Moreover, u is the solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · (Ae(u)) = f x ∈ Ω,

u = 0 on ΓD,

u ·n = gN on ΓN .

(3)

The homogenised tensor A = (ai jkh) is symmetric and does not depend on x.
In order to compute it, one must first solve a cell problem in order to determine the
cell function χ lm(y) = (χ lm

k )(y). More terms of the asymptotic expansion may be
calculated. In particular, u1 takes the form

u1(x,y) =
1
2 ∑

i, j=1,2

(
∂ui

∂x j
+

∂u j

∂xi

)
χ i j(

x
ε
). (4)

We call u the homogenised solution for the problem (1). It captures the macro-
scopic behaviour of uε . To recover the effect of the heterogeneities, we consider
the approximation u + εu1. It does not necessarily satisfy the same boundaries
condition prescribed for the heterogeneous solution. This may be remedied by in-
troducing a boundary corrector C which is given by −εu1 at the boundaries, in
similarity to [8]. We call u+εu1 +C the homogenised corrected solution.

This approximation is computationally much cheaper to obtain than solving
the full heterogeneous problem, and it still allows for the resolution of the hetero-
geneities.

Complex structure
Let us again consider the linear elasticity problem for a composite. Unlike what

we did previously, we now assume that the material is not necessarily periodically
distributed. Then, instead of (1), we consider⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−∇ · (A(x)e(u)) = f x ∈ Ω,

u = 0 on ΓD,
σ(u) ·n = gN on ΓN ,

(5)

where the parameter ε was suppressed and the tensor A reads

A(x) =
{

A1(x), x ∈ Ω1,

Aε
2(x), x ∈ Ω2.

(6)

Here Aε
2 is an ε-periodic tensor and it is assumed that |Ω1| < |Ω2|, where Ω1

and Ω2 are two non-overlapping subsets of Ω such that Ω = Ω1 ∪Ω2. The ho-
mogenisation method described earlier may not be employed to solve (5) with (6)
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as A is not periodic everywhere. One possible alternative, with the drawback of not
making use of the periodicity of the elasticity tensor over Ω2, is the usage of domain
decomposition techniques. In what follows, we will establish a hybrid approach for
this problem where we combine homogenisation and domain decomposition tech-
niques.

We will introduce a sequence of problems set on the two overlapping subdo-
mains Ω̂1 and Ω2, where Ω1 ⊂ Ω̂1 ⊂ Ω. Let Γ1 = ∂Ω1∩∂Ω2 and Γ2 = ∂Ω̂1∩∂Ω2,
as illustrated in Figure 2.
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Figure 2: The computational domain Ω .

The hybrid approach algorithm reads

• Initialise - choose ĥ
0

as an initial approximation for u|Γ2.

• For k = 0, 1, 2, . . .

solve ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∇ · (Ae(v̂k+1)) = f x ∈ Ω̂1,

v̂k+1 = 0 on ΓD
⋂

Ω1,

σ(v̂k+1) ·n = gN on ΓN
⋂

Ω1,

v̂k+1 = ĥ
k

on Γ2.

(7)

Use homogenisation techniques to find the homogenised corrected solu-
tion ŵk+1 := wk+1 + εwk+1

1 + Ck+1 which approximates the solution of the
problem ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ · (Aε
2e(wk+1)) = f x ∈ Ω2,

wk+1 = 0 on ΓD
⋂

Ω2,

σ(wk+1) ·n = gN on ΓN
⋂

Ω2,

wk+1 = vk+1 on Γ1.

(8)

Update ĥ
k+1

ĥ
k+1

= ŵk+1|Γ1. (9)
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This procedure generates a sequence of approximations ûk to (5) with (6) de-
fined by v̂k over Ω1 and by ŵk over Ω2. A stopping condition for this algorithm is
defined in terms of the norms of the components of (ŵk − v̂k)|Γ2.

Example
Consider (5) with (6), where the computational domain Ω = [0,1]× [0,1] is

split into the non-overlapping subdomains Ω1 = [0,0.1]× [0,0.1] and Ω2 = Ω−Ω1.
The components of the elasticity tensor are assumed to described a layered material
throughout Ω except for some circular inclusions on Ω1, see Figure 3. The plate
is kept fixed along x = 0, and along its upper, lower and right boundaries σ ·n is
given by (0,1), (0,0) and (1,0), respectively.
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Figure 3: Left: plate with layered material and inclusions. Right: zoom up of the
subdomain Ω1.

The constituents of the layered material have Young’s Modulus and Poisson’s
ratio E1 = 1, ν1 = 0.3 and E2 = 3, ν2 = 0.3. We like to think of the inclusions
as being randomly distributed. They consist of a linear elastic material character-
ized by Young’s modulus E3 = 4 and Poisson’s ratio ν3 = 0.1. The radius of each
inclusion is r = 0.01. They are centered at the points P1 = (0.02, 0.02), P2 =
(0.05, 0.03), P3 = (0.08, 0.015), P4 = (0.015, 0.05), P5 = (0.04, 0.07), P6 =
(0.08, 0.055), P7 = (0.015, 0.08), P8 = (0.07, 0.085).

This problem concerns a periodic structure with localised imperfections. We
may handle this by employing the hybrid approach for elasticity algorithm (7)-(9)
with the prescribed stopping condition, where we define Ω̂1 = [0, 0.15]× [0, 0.15].

A reference solution u for this problem can be determined using finite elements

with a very fine mesh. For the algorithm, an initial guess ĥ
0

for u|Γ2 must be given.

Here we take ĥ
0
= u|Γ2, where u is the homogenised solution corresponding to a

modification of the current problem at hand - instead of considering inclusions, we
assume that the material is periodic and layered over Ω. Finite elements are also
employed to solve (7) for each iteration step. As for (8) we approximate its solution
by applying homogenisation methods like before.
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Table 1: Error of the hybrid procedure.

Horizontal component Vertical component Iterations

Maximum norm L2 norm Maximum norm L2 norm k

E0 1.7E −1 2.8E −2 2.3E −1 7.5E −2 −
EC 3.8E −2 5.4E −3 3.9E −2 5.8E −3 7

The third line of Table 1 displays the norms of the error E0 = u−u. On the
last line of the table we show the norm of the error of the approximation obtained
by using the hybrid approach as described.

Conclusion
In this work we describe an approach to obtain solutions for problems involv-

ing materials which are periodically distributed but have localised imperfections.
This approach combines homogenisation and domain decomposition techniques. It
may be applied to a wide range of problems where local phenomena is taking an
important role, and for which local resolution of the microscale is required.
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