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Computational Flow Simulations around Circular
Cylinders Using a Finite Element Method
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Summary
The applications of a finite element scheme to three-dimensional incompress-

ible viscous fluid flows around circular cylinders are presented. The scheme is
based on the Petrov-Galerkin weak formulation with exponential weighting func-
tions. The incompressible Navier-Stokes equations are numerically integrated in
time by using a fractional step strategy with second-order accurate Adams-Bashforth
scheme for both advection and diffusion terms. Numerical solutions for flow around
a circular cylinder are presented. The parallelization and the performance of the
present scheme are also checked.

Introduction
In the flow field around a circular cylinder up to high Reynolds number, there

are some interesting phenomena such as von Kármán vortex street, the decreas-
ing of the drag coefficients on the cylinder, the transition from laminar flow to
turbulence, and so forth. The studies of such flow phenomena have been qualita-
tively and quantitatively presented by many experimental fluid dynamicists [1-6]
and computational fluid ones [7-9].

In our previous works, we have presented the Petrov-Galerkin finite element
scheme using exponential weighting functions for solving effectively incompress-
ible Navier-Stokes equations up to high Reynolds number regimes [10,11]. The fi-
nite element scheme was applied to three-dimensional flow around a circular cylin-
der within the wide range of Reynolds numbers from 103 to 106, and the agreement
between the present results using coarse meshes and other existing data qualita-
tively appeared satisfactory [11].

The present work gives more quantitative agreement for the flow around a cir-
cular cylinder using the Petrov-Galerkin finite element scheme with finer meshes.
The parallelization of the finite element scheme is also necessary to attempt the
possibility to large-scale flow simulations. The parallel strategy utilized here is
based on the well known domain-decomposition technique [12]. The parallel per-
formance is also evaluated on PC cluster using MPI(Message-Passing Interface).

Petrov-Galerkin Finite Element Formulation
The motion of an incompressible viscous fluid flow is governed by the Navier-

Stokes equations in dimensionless form. By applying the time splitting technique
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to the set of equations, we can split formally the problem into the nonlinear system
of advection-diffusion equations and the linear Euler’s system of equations.

It is well known that the conventional Galerkin finite element scheme using
coarse meshes leads to spurious oscillatory solutions for flow simulations at high
Reynolds number. Therefore, let us now consider the Petrov-Galerkin finite ele-
ment formulation using exponential weighting functions [10,11] to the nonlinear
advection-diffusion equations with a Reynolds number Re. By applying the di-
vergence theorem to the weighted residual form in a subdomain Ωe of the whole
domain Ω, and after some manipulations, we have the following weak form :

∫
Ωe

{
u̇i(ũi,un

i )+u jui, j
}

MαdΩ+
∫

Ωe

1
Re

ui, jNα , jdΩ =
∫

Γe

τiNα dΓ (1)

where τi ≡ ui, jn j/Re, Γe is the boundary on the subdomain, and Mα denotes the
weighting function given by

Mα(x) = ∑
γ ,i

Nα(x)e−ai(Nγ xγ
i −xα

i )

ai = αi| Li | sgn(vi)

⎫⎪⎬
⎪⎭ (2)

where Nα is the shape function in three dimensions, vi is the velocity vector av-
eraged in Ωe, Li is the reference length for xi-directions, αi is the upwinding pa-
rameters which control an effect of the upwinding, and sgn(vi) denotes the signum
function.

At this stage, by using the second-order accurate Adams-Bashforth strategy as
a time integration scheme, we have the finite element system of equations [11].

Numerical Examples
In this section we present numerical results obtained from applications of the

above-mentioned numerical method to incompressible viscous flow problems. In
our numerical performances, we adopt the lowest interpolation functions in which
the velocity and the scalar potential are piecewise trilinear, and the pressure is con-
stant over each element. The initial velocities are assumed to be zero everywhere
in the interior domain.

Flow around a circular cylinder
We shall consider the flow around a circular cylinder as a typical flow problem.

The whole domain consists of 30D in x1-direction (i.e., the streamwise), 20D in x2-
direction (i.e., the lateral), and 4D in x3-direction (i.e., the spanwise), where D is the
diameter of the cylinder. The inflow is uniformly given as the velocity, U0, without
a velocity fluctuation. At the outflow boundary, we set φ = 0 as the condition of the
modified velocity potential φ and τn

i = 0. The slip boundary conditions are used
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on the lateral, the upper and lower boundaries, and non-slip conditions on the sur-
face of the cylinder. The Reynolds number,Re, based on the uniform velocity,U0,
at the inflow and the diameter,D, of the cylinder is up to 106 in case 1. The param-
eters that characterize the finite element approximation are summarized in Table
1. The case 1 presented in reference [11] is the coarse meshes with 160× 50 in
the cross-sectional plane around the cylinder and 20 divisions in the spanwise di-
rection. For the fine meshes in case 2 the number of meshes in the cross-sectional
plane is 400×50 around the cylinder whereas the number of divisions in the span-
wise direction is the same number as the case 1. Tables 2 and 3 give the computed
time-averaged quantities for Reynolds numbers of 104 and 105, respectively, and
compare with several experimental data and other numerical ones. In Tables 2 and
3, Lr/D denotes the recirculation length behind the cylinder, Cd the time-averaged
drag coefficient, Cpb the back-pressure coefficient and St the Strouhal number. The
present results of case 2 are fairly in good agreement with some experimental data.
Fig.1 shows the instantaneous streamlines and pressure fields around the cylinder
in the horizontal center cross-section for different Reynolds numbers. In Fig.2, we
give the time-averaged pressure distributions along the surface of the cylinder for
Reynolds numbers of 104 and 105, and also compare with the experimental data.
The present profiles (see Fig.2(a)) of both cases agree generally well with the ex-
perimental data obtained by West and Apelt [3]. On the other hand, both profiles
at Re = 105 are different in the interval 60◦ < θ < 300◦. Especially the agreement
between the present results in case 2 and the experimental data appears satisfactory
around θ = 180◦ behind the cylinder. Fig.3 shows the time-averaged drag coeffi-
cient, Cd, and the Strouhal number, St , through comparison with experimental data
and other numerical solutions. In case 1, the minimum value of the present drag
coefficients is 0.4572 at Re = 5×105. The correlation between the present results
and some other data appears satisfactory except the solutions of 2D flow simula-
tions up to Reynolds number of 104. The present results for the Strouhal number
are also qualitatively similar to the experimental data.

Flow around two circular cylinders
As the second example, we shall consider the flow around two circular cylin-

ders in order to check the parallelization of the finite element scheme using PC
cluster. Table 4 gives the single processor specification used in this work. The
characteristic parameters of the finite element discretization are summarized in Ta-
ble 5. Fig.4 shows the decomposed meshes divided into 16 subdomains by using
METIS [13] for three-dimensional flow around two circular cylinders at a Reynolds
number of 103. The instantaneous streamlines and pressure fields using 1 processor
shown in Fig.5(a) can be qualitatively compared with the results using 4 processors
with different subdomains (see Fig.5(b), (c)). The workability of the paralleliza-
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Table 1: A summary of the parameters
Cases Re Nodes Elements lmin �t αi

case 1[11] 104,105 179,970 168,000 0.00341 0.002 0.4, 1.0
case 2 104,105 449,610 420,000 0.00341 0.001 0.4

Table 2: Comparison of time-averaged quantities at Re = 104

Lr/D Cd Cpb St

Presents
case 1 0.765 1.227 −1.363 0.1984
case 2 0.750 1.184 −1.232 0.1977
Tamura&Kuwahara(1989)
FDM(400×100×40) ≈ 1.193

Experiments
West&Apelt(1982) ≈ 1.18 ≈−1.22 ≈ 0.199
Roshko(1954) 1.15 ≈−1.08 ≈ 0.2
Fey et al.(1998) 0.1996

Table 3: Comparison of time-averaged quantities at Re = 105

Lr/D Cd Cpb St

Presents(Re = 105)
case 1 0.529 1.027 −0.9835 0.1907
case 2 0.482 1.199 −1.247 0.1831
Tamura&Kuwahara(1989)
FDM(400×100×40) ≈ 1.228

Breuer(2000)
LES(325×325×64) 0.375 1.286 −1.480 0.203

Experiments
Cantwell&Coles(1983) ≈ 0.44 1.237 −1.21 0.179
Wieselsberger(1921),
Schewe(1983) ≈ 1.2 ≈ 0.2
Fey et al.(1998) 0.1846

tion to the present scheme is performed because the results using 4 processors are
close to ones using 1 processor. Fig.6 shows the relationship between the number
of processors and the computing performance, and gives good parallel performance
of the present scheme.

Conclusions
We have presented a finite element scheme for solving numerically three-dimen-

sional incompressible flow around a circular cylinder up to high Reynolds number.
The scheme was based on the Petrov-Galerkin finite element formulation using ex-
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Table 4: PC specification
Single processor

CPU Core2 Duo(E6600) 2.4GHz
Memory 1.0GB
Cashe 4MB
OS Linux kernel2.6.18 (Fedora Core 5)

Number of processors 4

Table 5: A summary of the parameters
Re Nodes Elements �t αi

103 76,342 68,536 0.01 0.4

ponential weighting functions. The set of equations was numerically integrated in
time by using the second-order accurate Adams-Bashforth strategy for both advec-
tion and diffusion terms. The numerical results for flow around a circular cylinder
using fine meshes demonstrated more quantitative agreement with experimental
data and other numerical ones.

The parallel computation of flow around two circular cylinders for example, has
been also performed on a PC cluster equipped with four Intel Core2 Duo 2.4GHz
processors. For the parallel implementation, the presented results demonstrated the
efficiency and scalability of the parallelization using the domain-decomposition
strategy.
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(a) Re = 104 (b) Re = 105

Figure 1: Instantaneous streamlines and pressure fields (case 2)

(a) Re = 104 (b) Re = 105

Figure 2: Time-averaged pressure distributions

(a) Drag coefficients (b) Strouhal numbers
Figure 3: Time-averaged drag coefficients and Strouhal numbers
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Figure 4: Domain-decomposition into 16 subdomains

(a) 1 processor
(b) 4 processors
(4 subdomains)

(c) 4 processors
(16 subdomains)

Figure 5: Instantaneous streamlines and pressure fields at Re = 103

(a) Speed-up ratio (b) Efficiency
Figure 6: Parallel computing performances


