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Summary
Microstructural modeling is very important because it can provide a critical link

between properties, mesoscopic length scale, and atomistic scale (multiscale mod-
eling). There exist a couple of models and simulations to study microstructural evo-
lution. It will be important and useful to discover unified model equations hidden
in microstructure evolution. In this paper, I will derive the unified model equations
for microstructure evolution. The governing equations in Lifshitz-Slyozov-Wagner
theory and diffusion screening theory that modeled microstructural evolution are
derived with some approximations from the unified model equations. The gov-
erning equations in multiparticle diffusion simulation and phase-field simulation in
microstructure evolution are also derived from the unified model equations. The
advantages and limitations for different theories and simulations in microstructure
evolution are compared. This comparison can guide scientists to select computa-
tional tools for their needs in microstructure evolution. The unified model equa-
tions can be applied in many new technological fields, such as self-assembly in
nanoscience.

Introduction
In a typical phase separation process, phase coarsening usually follows a tem-

perature quench from an initially homogeneous phase that results in a two-phase
structure. Specifically, a typical precipitation sequence occurring within a supersat-
urated solution, or matrix, initially involves nucleation of the second phase, then its
growth, and, finally, onset of competitive coarsening among the precipitate parti-
cles. Phase coarsening is a common relaxation phenomenon occurring during late-
stage microstructure evolution that is driven by a decrease in the total interfacial
free energy of two-phase systems. Indeed, the physical and mechanical proper-
ties of two-phase materials, such as hardness and toughness, often depend on the
material’s average particle size and particle-size distribution function (PSD).

Many theories and simulations in microstructure evolution have been devel-
oped during the last 50 years. What are the similarities and the differences among
the theories and simulations in microstructure evolution? What are the fundamental
principles for these theories and simulations? What are the advantages and the lim-
itations for these theories and simulations? Are there any unified model equations
for these existing theories and simulations? In this paper, answers to these questions
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will be provided from a fundamental point of view. Understanding these questions
will advance theories and simulations in microstructure evolution. Unified model
equations will be derived for microstructure evolution, and some existing theories
and simulations can be derived from the unified model equations.

Lifshitz-Slyozov-Wagner theory
The first quantitative description of phase coarsening was initiated by Lifshitz

and Slyozov [1] and Wagner [2]. This theory is often referred to as the “LSW
theory” and retains full validity only in the limit of a vanishing (zero) volume frac-
tion. The prediction of LSW theory that the cube of the average length scale of
particles increases linearly with time has, however, been shown to remain valid by
numerous experiments, even in the case of non-zero volume fractions. Specifically,
the authors found that systems entering the long-time limit of phase separation
exhibit self-similar (affine) properties, such as a re-normalized PSD, wherein the
microstructure changes continuously by just a single scale factor. In other words,
certain metric features of the microstructure change by a simple magnification fac-
tor as annealing time increases. The growth rate of particle in LSW theory is

(
dR
dt

)
LSW

=
1
R

(
1
Rc

− 1
R

)
, (1)

where Rc and R are critical radius and radius, respectively. In the derivation of
Eq.(1), all length scales are non-dimensionalized through the appropriate capil-
lary length, lc = 2σVm

RgT , where σ , Vm, Rg and T represent the surface energy, molar
volume, universal gas constant, and absolute temperature, respectively. Physical
coarsening time is non-dimensionalized through the characteristic diffusion time,

τd = l2
c

DC0Vm
, to yield the dimensionless time, t. Here D and C0 are, respectively,

the matrix interdiffusion coefficient and the equilibrium solute concentration in the
matrix at a planar interface with the precipitate phase [3].

Diffusion screening theory
LSW theory ignores the effect of the volume fraction of the precipitate parti-

cles and their interactions by assuming that neighboring particles are far away from
the particle of interest. However, in real systems such as alloys, a finite volume
fraction of particles, VV �= 0, is distributed, often in close proximity, and both local
and many-body interactions arise among the particles. Numerous attempts have
been made over the past 50 years to improve upon LSW theory by extending its ap-
plicability to the more realistic situation of non-zero volume fractions (see recent
book chapter [4] and paper [3] and references therein ). In the case of non-zero
volume fraction, the diffusion interactions among particles, which are many-body
interactions, need to be considered. In order to approximately describe many-body
interactions, we introduced diffusion screening length, RD which sets the maximum
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range over which the interactions occur, and beyond which such interactions cease.
Quantitatively speaking, the diffusion potential at the surface of screening sphere
is the average potential of the system or background potential. We found that dif-
fusion screening length is related to the volume fraction and moments of PSD as
follows [5].

RD =
1√
3

(〈R3〉
〈R〉

)1/2

V−1/2
V . (2)

Using the Poisson equation to describe the diffusion field, Gibbs-Thomson con-
dition, and diffusion screening length, we developed a diffusion screening theory
(DST) for the case of non-zero volume fraction. In DST, the interactions among
particles increase the LSW growth rate by a factor of (1 + R/RD), described as
follows (

dR
dt

)
DST

=
(

dR
dt

)
LSW

[
1+

R
RD

]
. (3)

Following the LSW argument and self-similarity of late phase coarsening, PSD
can be calculated, and it is in good agreement with experimental results [5]. Ap-
plying the stability conditions for largest particle in the system, the maximum size
of particle and coarsening rate constant of particle can be predicted [5].

Pletcher [7], conducted experimental measurements to determine normalized
maximum radius ρmax in Al-Li alloy. He found that the normalized maximum
radius ρmax = 1.76 from experimental measurement when the precipitate volume
fraction VV = 0.43. The DST predicts that ρmax = 1.75. Marqusee and Ross’ pre-
diction is ρmax = 1.82 [6]. This shows that the prediction of the DST on the nor-
malized maximum radius is in good agreement with the experimental measurement.
The DST predicted that the coarsening rate constant is related to volume fraction
by a complicated function and reduces to the value of the LSW theory when the
volume fraction goes to zero.

Unified model equations
We choose a coarse-grained order-parameter field (e.g., concentration density)

φ (�x, t) to describe the entire microstructure. This method can be used to study solid-
solid, solid-liquid and liquid-liquid phase separating systems in three dimensions.
A suitable Ginzburg-Landau free energy functional to describe an ordered phase in
three dimensions is as follows in the dimensionless form

F [φ ] =
∫

d3x[
1
2
(∇φ )2 +V (φ )], (4)

where the bulk free energy density V(φ ) has a double-well structure. The minima
of V(φ ) occur at φ = ±1, and we adopt the convention that V(±1) = 0. The two
minima of V correspond to the two equilibrium states in phase separation in binary
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system, while the gradient-squared term in Eq.(4) is related to an energy cost with
an interface between two phases.

From now on we limit our study to the case of a conserved order parameter. In
the binary alloy system, it is clearly physically that A and B atoms can exchange
only locally, and the free energy of the system will reach the minimum as system
finishes phase separation, which leads to diffusive transport of the order parameter
as follows

∂φ
∂ t

= ∇2 δF
δφ

= −∇2[∇2φ −V ′(φ )]. (5)

Eq.(5) is called Cahn-Hilliard equation. Eqs.(4) and (5) are unified model equa-
tions.

Using the relationship developed in Allen and Cahn’ paper [8],

∇2φ =
∂φ
∂g

(∇ · ĝ)+
∂ 2φ
∂g2 , (6)

then the chemical potential near the interface, Γ, can be rewritten as

μ |Γ = V ′(φ )− ∂φ
∂g

κ − ∂ 2φ
∂g2 , (7)

where κ = ∇ · ĝ is the curvature, and ĝ is a unit vector normal to the interface. It
is considered that μ and κ vary smoothly along the interface and that ∂φ

∂g is sharply

peaked at the interface in Eq.(7). Multiplying Eq.(7) by ∂φ
∂g and then integrating

over g through the interface yield the value of μ at the interface

μ |ΓΔφ = ΔV −σκ , (8)

where Δφ is the change in φ across the interface, and ΔV is the difference in minima
of the potential for the two bulk phases. In the derivation of Eq.(8), both ∂φ

∂g → 0

far from the interface and the identification of surface energy σ =
∫ ∞
−∞( ∂φ

∂g )2dg are
applied [8].

The velocity v of the motion of the interface is related to the imbalance between
the current following into and out of it as follows

vΔφ = Jout −Jin = −
[

∂ μ
∂g

]
= −[ĝ ·∇μ ], (9)

where [...] represents the discontinuity across the interface.
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Derivation of LSW theory
Now we study the case of a single spherical particle of minority phase Ω+(positive

values of the order parameter) with a radius R, immersed in a sea of majority phase
Ω− (negative values of the order parameter), and separated by the interface Γ. We
define φ0(�r) = φ+

eq in Ω+, φ0(�r) = φ−
eq in Ω−, Δφ = φ+

eq−φ−
eq, a variable θ (�r)

θ (x) =
φ (�r)−φ0(�r)

φeq
, (10)

and the dimensionless quantity L0,

L0 =
σ

2φ 2
eq

, (11)

where�r is the field point vector. Simplifying to the case where V(φ ) = φ 2(φ 2 −
2)/4 and the minima have equal depth and taking the minima to be φ = ±1, we
have ΔV = 0, and Eq.(8) is reduced to usual Gibbs-Thomson condition as

μ |Γ = −σκ
Δφ

. (12)

First, the quasi-steady approximation, ∂φ/∂ t = 0, is applied in Eq.(5). Sec-
ond, to the first order, μ can be written as μ = χ−1(φ (�r)−φ0(�r)), where χ is the
susceptibility defined as χ = (∂ μ/∂φ )−1

eq . The coordinates and time are rescaled
by the quantities L0 and L2

0, respectively, but keep the same notation in Eq.(9) and
Eq.(12). Finally, Eqs.(5), (9), and Eq.(12) can be reduced to

∇2θ (�r) = 0, (13)

θ (R) =
1
R

, (14)

dR
dt

= [ĝ ·∇θ ]Γ. (15)

The solution to Eq.(13) with the condition Eq.(14) is

θ (r) =
1−θ0R

r
+θ0. (16)

Now ∂θ/∂ r can be calculated from Eq.(16). After ∂θ/∂ r is substituted into
Eq.(15), we can get the growth rate dR

dt , which is the same as the LSW growth
rate, Eq.(1), with Rc = 1/θ0. θ0 is the background-matrix dimensionless poten-
tial, and it is assumed to be uniform throughout the matrix phase. It shows that
we can derive the LSW theory with some approximations from the unified model
equations.
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Derivation of governing equation in multiparticle diffusion simulation
Consider the case with many (say n) spherical particles of minority phase with

different radii, Ri, immersed in a sea of majority phase. The contiguous spaces
between the particles are filled by the matrix phase, throughout which the disper-
soid population is embedded. Particles are located by specifying the positions of
their centers with three coordinates representing the Cartesian vectors,�ri, and by
their radii, Ri. The diffusion transport to or from each phase domain occurs slowly
enough to be considered quasi-steady so that the term ∂φ/∂ t = 0 in Eq.(5). Fol-
lowing the same way as that used in the case of single particle, we can derive the
following equations

∇2θ (�r) = 0, (17)

θ (Ri) =
1
Ri

, (18)

dRi

dt
= [ĝ ·∇θ ]Γi , (19)

The boundary conditions at the spherical interface of the ith particle are specified
through the Gibbs-Thomson condition, Eq.(18). Numerically solving Eqs.(17),
(18), and (19) is multiparticle diffusion simulation (MDS).

Derivation of governing equations in diffusion screening theory
The interfaces in the conserved fields cannot move independently due to the

requirement of conservation. At late times the dominant growth mechanism is that
the order parameter transports from interfaces of high curvature to low curvature
by diffusion through the intervening matrix phase. We first linearize Eq.(5) in one
of the bulk phases, with φ ≈ 1. Substituting φ = 1 + φ̃ into Eq.(5) and expanding
the term V ′(1+ φ̃ ) in Taylor series, and keeping linear term in φ̃ , we have

∂ φ̃
∂ t

= −∇2[∇2φ̃ −V ′′(1)φ̃)]. (20)

Again it is assumed that the diffusion field relaxes quickly compared with the rate

at which the interfaces move, and it is safe to have ∂φ̃
∂t = 0 in Eq.(20). With this

assumption, Eq.(20) should be written as

∇2φ̃ −V ′′(1)[φ̃ − φ̃∞] = 0, (21)

where φ∞ is background diffusion potential in the matrix. Eq.(21) is nothing more
than the starting equation of diffusion screening theory with V ′′(1) = 1/RD [5].
Using both Gibbs-Thomson condition and definition of diffusion screening length,
we can derive the growth rate (Eq.(3)) in the DST from Eq.(21).
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Conclusions
In summary, we have shown that, in the case of the conserved order parame-

ter, the Ginzburg-Landau free energy functional (Eq.(4)) and governing equation
(Eq.(5)) can account for the unified model equations for microstructural evolution.
Phase field simulation (PFS) can be derived from the unified model equations with-
out approximation. The LSW and DST theories and governing equations in MDS
are derived from the unified model equations with some approximations. This con-
vinces us that the LSW and DST theories, MDS, and PFS stem from same root, i.e.,
the unified model equations. The hidden relationships among the different theories
and simulations are revealed in this paper. This new result will help investigators
to understand and compare results in microstructure evolution more precisely and
effectively. The error from which the quasi-steady approximation ∂φ/∂ t = 0 can
be determined through conducting both phase-field simulation and multiparticle
diffusion simulation in the same system. The unified model equations show that
under the condition of accepted error, scientists can select faster and economical
computational tools to study microstructure evolution, rather than just use trial and
error. The unified model equations have many new technological applications such
as self-assembly in nanoscience [9].
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