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A Boundary Element Formulation for Boundary Only
Analysis of Thin Shallow Shells

E. L. Albuquerque1, M. H. Aliabadi2

Summary
This paper presents a boundary element formulation for the analysis of thin

shallow shells where only the boundary is discretized. Classical plate bending and
plane elasticity formulations are coupled and effects of curvature are treated as body
forces. The body forces are written as a sum of approximation functions multiplied
by coefficients. Domain integrals that arises in the formulation are transformed into
boundary integrals by the radial integration method. Two different approximation
functions are compared. Results are obtained for a spherical shallow shell and the
accuracy of each approximation function is assessed by comparison with results
from literature.

Introduction
Considerable progress has been made in the past few years in applying the

boundary element method (BEM) to the analysis of shell structures. One of the
first work was due to Newton and Tottenham [5] who presented an application of
the BEM to shallow shells by decomposition of the fourth order governing equa-
tion into a second order equation. Since this work, many different approaches arise
in the literature as can be seen in the review by Beskos [1]. In some formulations
there is no domain integration, as Lu and Huang [4] who developed a direct BEM
for shallow shells involving shear deformation. However, the direct BEM involves
complicated fundamental solutions. An alternative to the direct BEM is the cou-
pling of plate bending and plane elasticity formulations, as proposed by Zhang
and Atluri [8] who derived a formulation for static and dynamic analysis of classi-
cal shallow shells. The domain integrals were computed by domain discretization
into cells. Dirgantara and Aliabadi [2] extended this approach to the analysis of
shear deformable shallow shells. However, the discretization of the domain into
cells reduces one of the main advantages of the BEM that is the boundary only
discretization. Wen et al. [7] used the formulation proposed by Dirgantara and
Aliabadi [2] and transformed their domain integrals to boundary integrals using the
dual reciprocity technique.

The dual reciprocity method (DRM) and the radial integration method (RIM)
are techniques used in BEM to transform domain integrals into boundary integrals.
They are suitable for boundary element formulations where a complete fundamen-
tal solution is either unavailable or very complex, because in these cases one or
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more terms can remain as domain integrals in order to use a simpler fundamental
solution. Thus, a large number of problems can be solved with the knowledge of a
few number of fundamental solutions and additional terms as inertia or non-linear
effects, can be treated as body forces and taken to the boundary. In both methods,
the remaining terms are approximated through a finite series expansion involving
proposed approximating functions and coefficients to be determined. This expan-
sion is substituted in the generated domain integrals that are, subsequently, trans-
formed into boundary integrals.

In this paper, a boundary element formulation for thin shallow shells with no
domain discretization is presented. The domain integrals due to the curvature of the
shells are transformed into boundary integrals using the radial integration method.
Two approximation functions are used. Displacements computed using both ap-
proximation functions are in good agreement with results available in literature.

Boundary integral equations
Consider a shallow shell of an isotropic elastic material with the mid-surface

being described by z = z(x1,x2). The base-plane of the shell is defined in a domain
Ω in the plane x1,x2 whose boundary is given by Γ.

Using the equilibrium equation of isotropic shallow shells, the reciprocity re-
lation, and the Green theorem, Zhang and Atluri [8] derived integral equations that
can be divided in terms of plane elasticity and plate bending formulations. These
formulations are coupled by the domain integrals that arise in the equations. Inte-
gral equations for the plane elasticity formulation are given by:

ci ju j +
∫

Γ
t∗ik(Q,P)uk(P)dΓ(P)

=
∫

Γ
u∗ik(Q,P)tk(P)dΓ(P)+

∫
Ω

Cκk ju3u∗ik, j(Q,P)dΩ, (1)

where i, j,k = 1,2; uk is the displacement in directions x1 and x2, ti = Ni jn j, Ni j

are membrane forces applied in shell; u3 stands for the displacement in the normal
direction of the shell surface; κ depends on the curvature radii Ri j of the shallow
shell; ki j are the inverse of curvarture radii. P is the field point; Q is the source
point; and asterisks denote fundamental solutions. The constant ci j is introduced
in order to take into account the possibility that the point Q can be placed in the
domain, on the boundary, or outside the domain.

The integral equation for the plate bending formulation is given by:

Ku3(Q)+
∫

Γ

[
V ∗

n (Q,P)w(P)−m∗
n(Q,P)

∂w(P)
∂n

]
dΓ(P)+

Nc

∑
i=1

R∗
ci
(Q,P)u3ci(P)
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=
Nc

∑
i=1

Rci(P)u∗3ci
(Q,P)+

∫
Ω

q3(P)u∗3(Q,P)dΩ

+
∫

Γ

[
Vn(P)u∗3(Q,P)−mn(P)

∂u∗3
∂n

(Q,P)
]

dΓ(P)

+
∫

Γ
Cκn jui(P)u∗3(Q,P)dΓ(P)+

∫
Ω

C
κi j

ρi j
u∗3(Q,P)u3(P)dΩ

+
∫

Ω
[Cκi j(P)u∗3(Q,P)], j ui(P)dΩ, (2)

where ∂()
∂n is the derivative in the direction of the outward vector n that is normal to

the boundary Γ; mn and Vn are, respectively, the normal bending moment and the
Kirchhoff equivalent shear force on the boundary Γ; Rc is the thin-plate reaction
of corners; u∗3ci

is the transverse displacement of corners; q3 is the domain force
in the x3 direction; The constant K is introduced in order to take into account the
possibility that the point Q can be placed in the domain, on the boundary, or outside
the domain.

As can be seen, domain integrals arise in the formulation owing to the curvature
of the shell. In order to transform these integrals into boundary integrals, consider,
as in the DRM, that a body force b is approximated over the domain Ω as a sum of
M products between approximation functions fm and unknown coefficients γm, that
is:

b(P) =
M

∑
m=1

γm fm. (3)

for approximation functions based on pure radial basis function, or

b(P) =
M

∑
m=1

γm fm +ax+by+c (4)

with
M

∑
m=1

γmxm =
M

∑
m=1

γmym =
M

∑
m=1

γm = 0 (5)

for approximation functions based on radial basis function combined with augmen-
tation functions.

Two approximation functions are used in this work. The first is the radial basis
function that has been used extensively in the DRM given by:

fm1 = 1+R, (6)

and the second is the well known thin plate spline:

fm3 = R2 log(R), (7)
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used with the augmentation function given by equations (4) and (5). It has been
shown in some works from literature that this approximation function can give
excellent results for many different formulations (see Partridge [6] and Golberg et
al. [3]).

Equation (3) and (4) can be written in a matrix form, considering all source
points, as:

b = Fγ (8)

Thus, γ can be computed as:

γ = F−1b (9)

Body forces of integral equations (1) and (2) depend on the displacements. So,
using equation (9) and following the procedure presented by Albuquerque et al.
[9], domain integrals that come from these body forces can be transformed into
boundary integrals. Then, by discretization of these boundary integrals, a matrix
equation can be obtained. Finally, after applying boundary conditions, this matrix
equation is transformed in an linear system that can be solved to find the unknowns
of the shell problem.

Numerical results
In order to compare the accuracy of the different approximation functions, the

method is applied to a shperical shallow shell under an internal pressure. The prop-
erties of the shell are as follows: thickness t = 0.1 m; radius of the base of the shell
r = 5 m; k11 = k22 = 1/R = 0.01 m, E = 210000 MPa and ν = 0.3. The internal pres-
sure is q3 = 1 MPa. The edge of the shell is clamped, i.e., the boundary conditions
are u1 = u2 = u3 = ∂u3/∂n = 0.

The transversal displacement is computed using the two radial basis functions,
given by equations (6) and (7), with a mesh of 20 constant boundary elements and
17 internal points as shown in Figure 1.

Figure 2 shows the transverse displacements of the plate computed using the
first and the second approximation functions, given by equations (6) and (7), re-
spectively. Displacements are compared with results presented by Dirgantara and
Aliabadi [2] for the the same problem. As it can be seen, there is a good agreement
between all results.

Conclusions
This paper presented a boundary element formultaion for the analysis of thin

shallow shells where domain integrals are transformed into boundary integrals by
the radial integration method. As the radial integration method doesn’t demand
particular solutions, it is easier to implement than the dual reciprocity boundary



Boundary Element Formulation for Boundary Only Analysis 1129

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 1: Mesh and internal points for the spherical shell.
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Figure 2: Transversal displacement for the spherical shell with clamped edge.

element method. Two different approximation functions are used in the radial in-
tegration method. Results obtained with both approximation functions are in good
agreement with results presented in literature.
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