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Summary
In this paper, dynamics instability of laminated composite beams subjected to

axial and harmonically varying time loads are studied. The equations of motion are
derived in integral form using the principle of virtual work and the first order shear
deformation theory. A five node twenty-two degrees of freedom beam element
has been developed to discretize these equations. The regions of dynamic instabil-
ity of the beam are determined by solving the obtained Mathieu form differential
equations. The effects of non-conservative loads and shear stiffness parameters on
dynamic instability of the beam are studied.

Introduction
Laminated composites are increasingly being used in the design of load-carrying

lightweight structures, where high strength and stiffness to weight ratios are de-
sired. The dynamic analysis of laminated composite structures is important to be
investigated when such structures are subjected to varying time loads. Most of the
studies in this field are associated to laminated composite plates analysis. Exten-
sive efforts in this area have been done by Reddy [1]. In this study, the dynamics
of laminated composite beams is investigated, which has not been studied as com-
prehensively as laminated composite plates.

The dynamic instability of structures occurs because of parametric resonance.
The analytical dynamic instability analysis of the beams subjected to varying time
loads has been studied extensively by Bolotin [2]. The finite element method and
numerical simulation have been widely used by researchers to study the dynamic
analysis of laminated beams. Currently the demand for developing of beam ele-
ments and implementation of numerical tools to predict the response of such struc-
tures increases. Regular beam models can be used for moderately thick beams. But
for slender beams that the length to thickness ratio is extremely high and geometri-
cally nonlinear analysis is required, convergence may become very poor using such
models. Also when the beam is shear deformable with small strains and large de-
formation, developing a model that can take in account the various coupling effects,
such as stretching-bending coupling is important in dynamic analysis.

In this study, a new beam model is developed to descritize the equations of
motion, which can acquire accurate results with faster convergence and less com-
putation time. The model is a straight beam element with five nodes and twenty-
two degrees of freedom with considering transverse bending, stretching and twist-
ing coupling effects.
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Formulation
Consider a laminated prismatic composite four layer beam with uniform thick-

ness and coordinate systems as shown in Figure 1 is subjected to an axial harmonic
varying time load.

O
F

Figure 1: The laminated composite beam geometry and local coordinate system.

The constitutive stress-strain equations for the beam are

S = Eε (1)

where S is the stress resultant matrix, ε the strains matrix, E the laminate stiff-
ness matrix and the strains for each point of the beam in terms of the mid-surface
displacements (u1,u2,u3), and rotations(φ1,φ2,φ3) based on the generalized dis-
placement vector Ut =

{
u1, u2, u3, φ1, φ2, φ3,

}
are defined as follows;
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Equations of motion
The governing equations of motion corresponding to the constitutive Eq.(1) are
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derived using the dynamic version of principle of virtual work;

T∫
0

(δWI −δWE −δK)dt = 0 (3)

The δWE , δWI, δK are the virtual work done by external forces, the virtual work
done by internal forces, and the virtual kinetic energy respectively and defined as
follow;

δWI =
l∫

0

b/2∫

−b/2

(
δε tS

)
dydx (4)

δWE =
l∫

0

b/2∫

−b/2

fi.δUjdydx (5)

T∫
0

δKdt =
T∫

0

l∫
0

δUtMÜdxdt (6)

where fiare surface forces per unit area acting on the beam andδUiare virtual dis-
placements and M represents the mass matrix. It is perceptible that all terms of the
integral form of the equations of motion Eq.(3) are displacement dependents and
can be discretized through a well established beam finite element model.

Finite Element Model
A five-node twenty-two degrees of freedom beam element, Figure 2, based

on the first order shear deformation theory is developed to discretize the integral
form of equations of motion. The effects of bending-stretching, shear-stretching,
bending-twisting couplings, transverse shear deformation, and continuity have been
considered to define optimum degrees of freedom for each node to acquire fast and
accurate results.

Figure 2: A proposed beam element.

The nodal displacementUe can be expressed as the generalized global displace-
ment U and shape functions N as defined with the following equation;

U = NUe (7)

The shape functions matrix N comply with Lagrangian cubic and quadratic inter-
polation polynomials. All the nodal displacements and rotations are measured at
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the mid-surface and expressed as;

Ue = Ue
1,2 +Ue

3,4,5 (8)

for end nodes 1 and 2: Ue
1,2 = {u11,u12,u13,φ11,φ12,φ13,u21,u22,u23,φ21,φ22,φ23}.

for nodes 3,4, and 5: Ue
3,4,5 = {u32,u33,φ31,u42,u43,φ41,u52,u53,φ52,φ53}

Nodal displacements are a combination of the axial displacements (u11,u21),
the lateral displacements (u12,u22,u32,u42,u52), the transverse displacements
(u13,u23,u33,u43,u53), and the rotations (φ11,φ12,φ21,φ22,φ13,φ23,φ31,φ41,φ52,φ53).

Substituting equations (4)-(7) into equation (3), the element dynamic equations
of motion in matrix form are obtained as follows;

MeÜe
t +(Ke

e +Ke
G +Ke

L)Ue
t = Fe (9)

The element mass matrixMe, and the elastic stiffness matrixKe
e, the geometric stiff-

ness matrixKe
G, the loading stiffness matrixKe

L, and the total external nodal force
Feare given as;
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If the external force is in the parametric form of p = p0 + pt cosθ t, where p0 is
static component of the load, pt is dynamic component of the load, θ is loading
frequency, and t is time, the loading stiffness matrix yields to the static and dynamic
stiffness matrices as follows;

KL = K0
L +Kt

L cosθ t (15)

A prismatic beam under an axial load may undergo flexural buckling. The buck-
ling load of the beam without shear deformation in account herein is defined as
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pw
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12l2 and with shear deformation as 1
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Ŝ
, where Ŝ is shear stiff-

ness of the beam. The first natural frequency of the beam without shear deformation
in account herein is defined as (ωw
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)4 and with shear deformation as
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, where I0 = b

N
∑

k=1
ρk (zk+1− zk) and N = number of layers.

The direction of the external forces applied on the surface of the beam can be con-
servative Pc or changes with the beam deformation and to be non-conservativePnc.

Then the global dynamic equation of motion of the beam becomes;

MÜt +
(
Ke +KG −K0

L −Kt
L cosθ t

)
Ut = F (16)

Stability Analysis
Equation (16) is a set of coupled Mathieu equations which govern the motion

of the beam with periodic solutions. The dynamic instability analysis is essentially
about the determination of the boundaries of the dynamic instability regions. Using
the approach defined by Bolotin [2], the characteristic equation of the system are
obtained as,
∣∣∣∣∣∣∣∣∣
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(17)

Expansion of the above determinant in second order form yields the equations
of the boundary of principal instability regions of the system. Consider a cross ply
0◦/90◦/90◦/0◦ laminated beam with equal thickness for each lamina. The material
and geometry properties of the beam are defined as,

Exx = 129.20708 GPa , Eyy = 9.42512 GPa , Gxy=5.15658 GPa , Gxz=4.30530 GPa ,

Gyz=2.54139 GPa,νxy = νxz = 0.3, νyz = 0.218837, ρ = 1550.0666 Kg-m3, bt =
0.0127 m, l = 0.1905 m. The first principal dynamic regions of instability of the
beams with length to height ratio l

h = 10 are determined by solving the equation
(17) and shown in Figure 3.

Conclusion
In this paper, dynamic stability analysis of laminated composite beams under

varying time loading was studied. A five node twenty degrees of freedom beam
model was developed to descritize the governing equations of motion. The matrix
form of the equations of motion was solved using the symbolic computation to
determine the principal instability regions of the beam subjected to conservative
and non-conservative loading. The results show:
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Figure 3: Dynamic principal instability regions of a cantilever cross-ply laminated
beams without shear stiffness (crosshatched region) and with shear stiffness (dash
lines) subjected to (a) conservative loads (b) nonconservative loads.

• The regions of dynamic instability of the shear un-deformable beams trends
to narrowing.

• The lower bound position of the shear deformable beams changes faster than
upper bound.

• The instability zones of the shear un-deformable shift towards lower excita-
tion frequencies.

• The instability region of the beam subjected to the nonconservative load
doesn’t intersect the axis of loading.

• The region of instability for the beam subjected to the nonconservative load-
ing is enlarged in compare to conservative loading system.
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