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A Meshless Local Petrov-Galerkin Method for the Analysis
of Cracks in the Isotropic Functionally Graded Material

K. Y. Liu1,2, S. Y. Long1,2,3 and G. Y. Li1

Summary
A meshless local Petrov-Galerkin method (MLPG)[1] for the analysis of cracks

in isotropic functionally graded materials is presented. The meshless method uses
the moving least squares (MLS) to approximate the field unknowns. The shape
function has not the Kronecker Delta properties for the trial-function-interpolation,
and a direct interpolation method is adopted to impose essential boundary condi-
tions. The MLPG method does not involve any domain and singular integrals to
generate the global effective stiffness matrix if body force is ignored; it only in-
volves a regular boundary integral. The material properties are smooth functions of
spatial coordinates and two interaction integrals[2,3] are used for the fracture analy-
sis. Two numerical examples including both mode-I and mixed-mode problems are
presented to calculated the stress intensity factors (SIFs) by the proposed method.
Example problems in functionally graded materials are presented and compared
with available reference solutions. A good agreement obtained show that the pro-
posed method possesses no numerical difficulties.

keywords: MLPG; functionally graded material; interaction integral; Stress
intensity factor

Introduction
The functionally graded material (FGM) has been applied in the development

of structure components in the aeronautic and astronautic domains, which possesses
gradually and continuously varying composition and structure, and its correspond-
ing properties vary gradually along thickness. This material gradient can relax the
stress concentration, weak the residual stress and improve the resistive ability of
heat impact. Due to the reasons of technology, working conditions and some other
factors, lots of cracks easily appear in a structure with FGM. The crack initiation
and growth is the dominant type of failure in FGM. Hence, It’s very important to
design the components of FGM and improve the fracture toughness. Since material
parameters of FGM are the function of spatial coordinates, this makes it difficult
to obtain the analytic solutions for complex problems. Many engineering problems
should be solved by numerical methods.

At present, the finite element method (FEM) is used generally for analysis of
FGM [4−7]. FEM has a big limitation continuously remeshing the finite element
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model involving a crack propagation. In recent years, various meshless methods
have been developed to solve fracture mechanics problems[8−10]. The Meshless
methods use a set of nodes scattered within the problem domain and on boundaries
of domain. These nodes do not form a mesh meaning it does not need any informa-
tion on the relationship between nodes for the interpolation of the unknown field
variables. Since no element connectivity data is required, the remeshing character-
istic of FEM is avoided. So, the meshless methods show a great potential to solve
problems involving cracks.

The MLPG method, presented by Atluri and Zhu[1], is a very promising method
for solving partial differential equations. Remarkable successes of the MLPG
method have been reported in solving the potential problem, the convection-diffusion
problem and the non-linear boundary problem by Atluri et al[1,11,12]; the fracture
mechanics problem by Kim and Atluri[13]. In this paper, the MLPG method is used
to analyze cracks in Isotropic functionally graded materials.

Crack-tip fields in FGM[14]

Consider a plane elasticity problem with a finite crack of length 2a lying in
a medium with modulus of elasticity E∗(x,y) and Poisson’s ratio ν∗(x,y) varying
with spatial coordinates, as shown in Fig.1 The governing equation of the Airy’s
stress function φ is
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where E∗(x,y), ν∗(x,y)are given by E(x,y) and ν(x,y) under a plane stress con-
dition and by E(x,y)

/[
1−ν(x,y)2

]
, E(x,y)

/
[1−ν(x,y)] under a plane strain con-

dition, and ∇2 is a Laplacian operator. Upon expanding the above equation, the
first term in the governing equation involves the bi-harmonic term identical to the
homogeneous material, and the remaining terms involve the spatial derivatives of
the material properties[2]. The elastic stress and displacement fields in FGM can
be derived using the stress function in variable separable form, the same as the
homogenous case. Hence, the singular stress field near the crack tip can be given



A Meshless Local Petrov-Galerkin Method for Cracks 119

as

σ11(r,θ ) =
KI√
2πr

f I
11(θ )+

KII√
2πr

f II
11(θ ) (2)

σ12(r,θ ) =
KI√
2πr

f I
12(θ )+

KII√
2πr

f II
12(θ ) (3)

σ22(r,θ ) =
KI√
2πr

f I
22(θ )+

KII√
2πr

f II
22(θ ) (4)

wherer and θ are polar coordinates with the crack tip as an origin, KI and KII are

the SIF of mode-I and mode-II, respectively, and f I
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Figure 1: Crack geometry in FGM

The strain singular fields near the crack tip can be obtained by Eq.(2)∼Eq.(4)

εi j = Si jkl(0)σkl (5)

where Si jkl(0) is a component of flexibility tensor near the crack tip. Similarly, the
displacement field can be written as

u1(r,θ ) =
1

Gtip

√
r

2π

[
KIg

I
1(θ )+KIIgII

1 (θ )
]

(6)

u2(r,θ ) =
1

Gtip

√
r

2π

[
KIg

I
2(θ )+KIIgII

2 (θ )
]

(7)

where Gtip = Etip
/
[2(1+νtip)] is shear modulus, Etip,νtip are elastic modulus and

Poisson’s ratio, respectively, all calculated at the crack tip, and the gI
i j(θ ), gII

i j (θ ) (i, j=
1,2) are the standard angular functions identical to homogeneous case. Even though
the material gradient does not influence the stress field distribution near the tip, but
it influences distinctly the magnitude of SIFs.

The energy release rate for a crack in FGM is given by
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I
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II
Etip

(8)
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It should be noted that the material gradient affects size of the region in which
homogeneous solution is valid, and so the stress field distribution is different at the
location far from the crack tip for homogeneous and non-homogeneous materials.

J-integral and M-integral in FGM[15]

A key of the research of fracture problems is how to computer J-integral. In
homogeneous materials, J-integral is path independent. However, in FGM it is path
dependent.

J-integral in homogeneous materials can be written as

J =
∫

Γ

(
W δ1 j −σi j

∂ui

∂x1

)
n jdΓ (9)

whereW = σi jεi j/2 = εi jDi jklεkl/2 is a strain energy density for the linear elastic
material model, n j is an unit outward normal to a contour Γ around the crack tip,
and Di jkl is a constitutive tensor. Using the divergence theorem, Eq.(9) can be
converted into an equivalent domain form written as
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where A is area inside the contour and q is an arbitrary differentiable function.
Expanding the above equation is given as

J =
∫

A

(
σi j

∂ui

∂x1
−W δ1 j

)
∂q
∂x j

dA

+
∫

A

(
∂σi j

∂x j

∂ui

∂x1
+σi j

∂ 2ui

∂x j∂x1
−σi j

∂εi j

∂x1
− 1

2
εi j

∂Di jkl

∂x1
εkl

)
qdA (11)

Considering equilibrium equation (∂σi j/∂x j = 0), compatibility conditions ( ∂ui
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)
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= 0 in homogenous materials, the second integrand of Eq.

(11) vanishes, and it reduce to
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Consider two independent equilibrium states of a cracked body. Assume state 1 to
be an actual state with specified boundary conditions, and state 2 to be an auxiliary
state. Superposition of J-integrals of two states leads to another J-integral for state
S
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where W (S) = 1
2(σ (1)

i j +σ (2)
i j )(ε (1)

i j +ε (2)
i j ).

For FGM, equilibrium equation and compatibility conditions are still satisfied,
the material gradient term is not constant any more and is a function of spatial
coordinates. The second integrand of Eq. (11) does not entirely vanish. So Eq.
(11) can be rewritten as
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By comparing Eq. (14) to Eq. (12), J-integral for FGM is in addition of the second
domain integral in Eq. (14). The integrands in the second domain integral have
singularity of order r−1 when an integral path is very close to the crack tip, but the
total integral term has order r1. In this case, the second integral can be negligible.
The evaluation of J̃-integral is almost the same as that of homogeneous materials.
J̃-integral must be accurately calculated for a relative large integral domain.

When the direction of a crack is not parallel to the direction of the material
gradient, even under symmetric loads, stress and displacement fields at the crack
tip are mixed-mode due to un-symmetry of FGM. For this situation, M-integral
is generally adopted to calculate SIFs. J̃-integral Eq. (13) for the state S can be
rewritten as

J̃(S) =
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According Eq. (15), the evaluation of J̃-integral depends on how the auxiliary field
is selected. In this study, the homogeneous and the non-homogeneous auxiliary
fields are adopted to calculate J̃-integral.

Firstly, consider a homogeneous auxiliary field, and select Eqs. (2)–(4) and
Eqs. (6)–(7) as the auxiliary stress and displacement fields, respectively. Thus
Di jklis a constant constitutive tensor evaluated at the crack tip. Hence, both equi-
librium equation and compatibility condition are satisfied in the homogeneous aux-
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iliary field. Then, Eq.(15) can be written as
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Eq. (16) can be rewritten as
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are J̃-integral for state 1 and state 2, respectively, and
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is the interaction integral defined for FGM.

Secondly, consider a non-homogeneous auxiliary field, and still select Eqs.
(2)–(4) and Eqs. (6)–(7) as the auxiliary stress and displacement fields, respec-
tively. Thus Di jkl is not a constant tensor and varies with the spatial coordinates.
The auxiliary stress field satisfies the equilibrium equation and the auxiliary strain
field is not compatible with the auxiliary displacement field (∂ui/∂x j �= 1

2 (∂u j∂xi
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+∂ui/∂x j)). Then, Eq.(15) can be rewritten as
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are J̃-integral for state 1 and state 2, respectively, and
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is the interaction integral for FGM.

Stress intensity factor
For linear elastic solids, J-integral represents an energy release rate, and simi-

larly, J̃-integral for FGM can be represented as

J̃ =
1

Etip
(K2

I +K2
II) (25)

Regardless of what the auxiliary field are selected, Applying Eq. (25) to state
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1,2,and S yields
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Comparing Eq. (17) to Eq. (28), we have
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Selecting state 1 as an actual state of the considered problem, and using asymptotic
solutions of mode I or II as the auxiliary state 2, SIFs for FGM can be derived as

K(1)
I =

M̃(1,I)E∗
tip

2
(30)

or

K(1)
II =

M̃(1,II)E∗
tip

2
(31)

where M̃(1,I) and M̃(1,II) are two interaction integrals for mode I and II, respectively,
and can be calculated using either Eq. (20) or Eq. (24).

The moving least square approximation and meshless shape function
Consider an unknown function of a field variable u(x) in a domain,Ωx. The

moving least squares approximation of u(x) is defined at x as

uh(x) = pT (x)a(x), ∀x ∈ Ωx (32)

where pT (x) is a complete monomial basis function of order m and a(x) is a vec-
tor containing coefficients a j(x), j = 1,2, · · · ,m, which are functions of the space
coordinates x = [x,y, z]T . For the two-dimensional problem, a complete monomial
basis function is chosen as linear basis function:

pT (x) =
[
1 x y

]
, m = 3 (33)

quadratic basis function:

pT (x) =
[
1 x y x2 xy y2

]
, m = 6 (34)
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When solving problems involving cracks,
√

r, the triangular function and its com-
binations in linear elastic fracture mechanics[9] are included in the basis, i.e.

pT (x) =
[
1 x y

√
r cos θ

2

√
r sin θ

2

√
r sin θ

2 sinθ
√

r cos θ
2 sinθ

]
(35)

The coefficient vector a(x) in Eq. (32) can be obtained by minimizing a weighted,
discrete L2 norm as follows

J(x) =
N

∑
n=1

w(xn,x)[pT (xn)a(x)− ûn]2 (36)

where N is the number of points in the neighborhood of x for which the weigh
function w(xn, x) > 0, and ûn is the fictitious nodal value of u. This neighborhood
of x is called the influence domain ofx, or influence circle in the two dimensional
problem. In this study, a Gaussian weight function is chosen to approximate the
function u(x). The Gaussian weight function are written as

w(xn,x) =

⎧⎨
⎩

exp[−(dn/cn)2k]−exp[−(rn/cn)2k]
1−exp[−(rn/cn)2k] , 0 ≤ dn ≤ rn

0, dn ≥ rn

(37)

where dn = ‖x−xn‖ is the distance from the sampling point x to a node xn, and rn

is a radius of the influence domain for the weight function w(xn,x). Parameters cn

and k in Eq. (37) control the shape of the Gaussian weight function w(xn,x). The
parameter k can be taken as 1, and cn = rn/4.

The stationarity of J in Eq. (36) with respect to a(x) leads to the following
linear relation between a(x) and ûn

A(x)a(x) = B(x)û (38)

where matrices A(x) and B(x) are defined by

A(x) = PT WP = B(x)P =
N

∑
n=1

w(xn, x)p(xn)pT (xn) (39)

B(x) = PT W = [w(x1,x)p(x1),w(x2,x)p(x2), · · · ,w(xN,x)p(xN)] (40)

ûT = [û1 û2 · · · ûN ] (41)

Hence, we have

uh(x) =
N

∑
n=1

ϕn(x)ûn, uh(x)≡ un �= ûn,x ∈ Ωx (42)
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where the shape function ϕn(x) is defined by

ϕn(x) =
M

∑
m=1

pm(x)[A−1(x)B(x)]mn (43)

The partial derivatives of ϕn(x) can be obtained as follows

ϕn,k =
M

∑
m=1

[pm,k(A−1B)mn + pm(A−1B,k +A−1
,k B)mn] (44)

where
A−1

,k = −A−1A,kA−1 (45)

The MLPG Formulation
Consider the following two-dimensional elasto-static problem on a domain Ω

bounded by a boundary Γ
σi j, j +bi = 0, in Ω (46)

where σi j is a stress tensor, bi is a body force. Boundary conditions are given as
follows

ui = ūi, onΓu, (47a)

ti = σi jn j = t̄i, onΓt (47b)

where ūi and t̄i are the prescribed displacement and traction on the boundary Γu

and Γt , respectively. n j is an unit outward normal to the boundary Γ. Γu and Γt are
complementary subsets of Γ.

In MLPG method, the system equation is constructed node by node, which
makes it possible to use different sets of equations for different nodes. In this
study, we use two different sets of equations for the essential boundary nodes and
not essential boundary nodes, respectively.

For a node x not located on the essential boundary, we start from a weak form
over a local sub-domain Ωs and use the MLS approximation to develop the present
meshless local Petrov-Galerkin formulation in which the local sub-domain Ωs is set
to β d1

i , β is a scaling factor for determining the sub-domain and d1
i is the distance

to the nearest neighboring point from node i. Here we set β ≤ 1.0 to make the
sub-domain Ωs not intersect with the essential boundary Γu, so a generalized local
weak form of Eq. (46) over the local sub-domain Ωs can be written as follows

∫
Ωs

(σi j, j +bi)vidΩ = 0 (48)
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where vi is a test function. Using the following relationship

σi j, jvi = (σi jvi), j −σi jvi, j (49)

and the divergence theorem in Eq. (47) leads to∫
Ωs

(−σi jvi, j +bivi)dΩ+
∫

∂Ωs

tividΓ = 0 (50)

where ∂Ωs is the boundary of sub-domain Ωs, ti = σi jn j, and n j is a unit outward
normal to the boundary ∂Ωs. In general, ∂Ωs = Γs ∪Ls with Γs being the part of
the local boundary located on the global boundary and Ls being the other part of the
local boundary over which no boundary condition is specified, i.e., Γs = ∂Ωs ∩Γ
and Γs = ∂Ωs −Ls.

It should be mentioned that Eq. (49) holds regardless of the size and the shape
of Ωs provided that Ωs is smooth enough for the divergence theorem to apply. So,
the shape of the sub-domain Ωs can be taken to be a circle in the two-dimensional
problem without loosing generality.

Applying the natural boundary condition, ti = σi jn j = t̄i on Γst where Γst =
∂Ωs ∩Γt , we get∫

Ωs

σi jvi, jdΩ−
∫

Γsu

tividΓ =
∫

Γst

t̄ividΓ+
∫

Ωs

bividΩ (51)

In order to obtain the discretized system equations, the global problem domain Ω
is represented by properly distributed field nodes. Using the MLS shape function
to approximate the trial function for the displacement at a point x

uh(x) =
{

u
v

}
=
[

ϕ1 0 · · · ϕn 0
0 ϕ1 · · · 0 ϕn

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

v1
...

un

vn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= ΦΦΦu (52)

where n is the number of nodes in the support domain of a sampling point at x, and
ΦΦΦ is the matrix of the MLS shape functions.

Substitution of the MLS approximation Eq. (51) into Eq. (50) leads to the
following nodal discretized system equation of MLPG for the Ith field node.∫

Ωs

GT (x,xI)σdΩ−
∫

Γsu

WT (x,xI)tdΓ =
∫

Γst

WT (x,xI)t̄dΓ+
∫

Ωs

WT (x,xI)bdΓ

(53)
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where

σ =

⎧⎨
⎩

σ11

σ22

σ12

⎫⎬
⎭ , W(x,xI) =

[
w1(x,xI) 0

0 w2(x,xI)

]
and G =

⎡
⎢⎣

∂w1
∂x1

0

0 ∂w2
∂x2

∂w1
∂x2

∂w2
∂x1

⎤
⎥⎦
(54)

Using constitutive and strain-displacement equations, we can have

σ = D(x)ε =
n

∑
j=1

DB jû j, t =
{

t1
t2

}
= nσ =

n

∑
j=1

nDB jû j, (55)

where B j is the strain matrix about the jth node, n is a matrix of the unit outward
normal to the boundary Γst and Γsu, and D(x) is the material matrix for the plane
stress problem. They are given by

B j =

⎡
⎢⎣

∂ϕ1
∂x1

0

0 ∂ϕ2
∂x2

∂ϕ1
∂x2

∂ϕ2
∂x1

⎤
⎥⎦

j

,n =
[

n1 0 n2

0 n2 n1

]

and

D(x) =
E(x)

1−ν2(x)

⎡
⎣ 1 ν(x) 0

ν(x) 1 0

0 0 1−ν(x)
2

⎤
⎦ (56)

Substitution of Eq. (54) into Eq. (52) leads to the following discretized systems of
equations for the Ith field node.

n

∑
j=1

KI û j = fI (57)

where KI is a matrix called the nodal stiffness matrix for the Ithfield node, which
is computed using

KI j =
∫

Ωs

GT DB jdΓ−
∫

Γsu

WT NDB jdΓ (58)

fI is a nodal force vector, which is computed using

fI =
∫

Γst

WT t̄dΓ+
∫

Ωs

WT bdΓ (59)

For the nodes located on the essential boundary, a direct interpolation method for
the imposition of essential boundary conditions is introduced in this paper. This
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method was proposed by G.R. Liu and L. Yan[15] to simplify the MLPG formula-
tion. The direct interpolation method enforces the essential boundary conditions
using the equation of the MLS approximation

uh
I (x) =

n

∑
i=1

φi(x)ui = ūI (60)

Eq. (59) is assembled directly into the system equations for field nodes to obtain
the global system equation of

KÛ = F (61)

Note also that this direct approach of imposing essential boundary conditions de-
stroys the symmetry of the stiffness matrix. Fortunately, this does not create addi-
tional problems, because the stiffness matrix created using MLPG is not symmetric
originally.

Numerical examples
MLPG method with two interaction integrals is applied to calculate SIFs of

cracks in FGM. In all examples, the elastic modulus is assumed to be spatially
variable, and the Poisson’s ratio is assumed to be constant. A fully enriched basis
function is adopted in a part of domain around the crack tip, and a linear basis
function is adopted in the rest of domain. For the numerical integration, 8× 8
Gauss points are assigned in a sub-domain for the domain integral, and 9 Gauss
points are assigned in a sub-boundary for the boundary integral.

Example 1: an edge-cracked plate under mode-I
An edge-cracked plate with length L = 8 unit, width W = 1 unit , and crack

length a, subjected to the constant tensile stress loading, the linear stress loading
and the constant strain loading, respectively, as shown in Fig.2, was discussed. The
elastic modulus was assumed to be

E(x) = E1 exp(ηx), 0 ≤ x ≤ W (62)

where E1 = E(0), E2 = E(W), and η = ln(E2
E1

). In computation, E1 = 1 unit, E2
E1

=
exp(η) = 0.1, 0.2, 5, and 10, and a = 0.2, 0.4, 0.5 and 0.6 are used. The Poisson’s
ratio was held constant with ν = 0.3. A plane strain condition was assumed.

Due to symmetry of geometry and load, one half of the plate was analyzed
by the MLPG method shown in Fig. 3. Fig. 4 shows a meshless discretization
consisting of 272 nodes. The shadow of domain with size c×b, as shown in Fig.(3),
was used to calculate M-integral.

Table 1-3 show the normalized mode-I SIFs KI/σt
√

πa, KI/σb
√

πa and
KI/σ0

√
πa for three types of loadings, respectively, where σt = σb = 1 unit, σ0 =

E1ε0(1−ν2), ε0 = 1 unit. The integral domain with size c = 0.2 and b = 0.1 unit
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was used and the homogeneous auxiliary field is adopted for M-integral. The re-
sults show that SIFs obtained by the proposed method agree well with the solutions
of references[2,17] for various combinations of E2/E1 and a/W . Table 4-6 show the
results of the normalized mode-I SIFs with the different integral domain size under
three types of loadings and two types of auxiliary fields. The results are accurate
and independent of the size of the integral domain and the type of the auxiliary
fields.

Example 2: a slanted edge-cracked plate under mixed mode
Consider a slanted edge-cracked plate with length L = 2 units, width W = 1

unit, and crack length a = 0.4
√

2 unit, inclination angle α = 45◦,as shown in Fig.
5. The elastic modulus was assumed to be

E(x) = E1 exp [η (x−0.5)] , 0 ≤ x ≤ W (63)

where E1 and η are two material parameters. In computation, E1 = 1, η = 0, 0.25,
0.5, 0.75, and 1.0 ,and the Poisson’s ratio ν = 0.3 are used. A plane stress condition
was assumed. The upper edge of the plate was subjected to the normal stress load
σ22(x,L/2) = ε̄E1 exp [η(x−0.5)], where ε̄ = 1 unit. The displacement constraint
in y direction is applied to the bottom edge, i.e. ν (x,−L/2) = 0(0 ≤ x ≤ W). Be-
sides, the displacement constraint in x direction is applied to a right node at the
bottom edge, i.e. u(W,−L/2) = 0. Fig. 6 shows a meshless discretization consist-
ing of 1004 nodes.

Table 7 shows the normalized SIFs KI/ε̄E1
√

πa and KII/ε̄E1
√

πa obtained
by the proposed method with two types of auxiliary fields for several values of
η and the integral domain size b× b = 0.1× 0.1. The results obtained by the
MLPG method agree well with that of Rao BN[2]. Table 8 shows the results of
the normalized SIFs with the different integral domains and two types of auxiliary
fields. The results are accurate and independent of the size of the integral domain
and the type of the auxiliary fields.

Summary and conclusions
In this study, the MLPG method was used to calculate SIFs of cracks in FGM.

In FGM, the elastic modulus is a function of spatial coordinates. Two interaction
integral methods were applied to calculate M-integral. In two numerical examples,
several material parameters and different integral domain sizes are considered to
evaluate SIFs. The comparisons have been made between SIFs obtained by the
proposed method and that by other methods. A good agreement obtained shows that
the proposed method possesses no numerical difficulties in the analysis of cracks
in FGM.
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Table 1: The normalized mode-I SIF for an edge-cracked under the constant tensile
stress loading

Method E2
E1

KI
/

σt
√

πa
0.2 0.4 0.5 0.6

MLPG

0.1 1.3201 2.5809 3.5543 5.1205
0.2 1.4023 2.4551 3.3209 4.7231
5 1.1294 1.7502 2.3689 3.4610

10 0.9976 1.5878 2.1797 3.2305

B.N.Rao et al.[2]

0.1 1.3374 2.5938 3.5472 4.9956
0.2 1.4193 2.4657 3.3297 4.6905
5 1.1269 1.7576 2.3772 3.4478

10 0.9958 1.5890 2.1889 3.2167

Erdoganet al.[17]

0.1 1.2965 2.5699 3.5701 5.1890
0.2 1.3956 2.4436 3.3266 4.7614
5 1.1318 1.7483 2.3656 3.4454

10 1.0019 1.5884 2.1762 3.2124

Table 2: The normalized mode-I SIF for an edge-cracked under the linear stress
loading

Method E2
E1

KI
/

σb
√

πa
0.2 0.4 0.5 0.6

MLPG

0.1 1.9102 1.9904 2.1734 2.5891
0.2 1.6031 1.7413 1.9117 2.3837
5 0.6798 0.9115 1.1728 1.5901
10 0.5583 0.7986 1.0731 1.4410

B.N.Rao et al.[2]

0.1 1.9029 1.9539 2.1547 2.5484
0.2 1.5976 1.7150 1.9322 2.3347
5 0.6865 0.9319 1.1666 1.5626
10 0.5635 0.8120 1.0447 1.4340

Erdoganet al.[17]

0.1 1.9040 1.9778 2.2151 2.1770
0.2 1.5925 1.7210 1.9534 2.4037
5 0.6871 0.9236 1.1518 1.5597
10 0.5648 0.8043 1.0350 1.4286
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Table 3: The normalized mode-I SIF for an edge-cracked under the constant strain
loading

Method E2
E1

KI
/

σ0
√

πa
0.2 0.4 0.5 0.6

MLPG

0.1 1.3112 1.8310 2.2917 3.0621
0.2 1.3205 1.8903 2.3808 3.2332
5 1.4904 2.5687 3.6781 5.5103
10 1.5692 2.8410 4.3412 6.5112

B.N.Rao et al.[2]

0.1 1.3118 1.8241 2.2800 3.0100
0.2 1.3186 1.8837 2.3966 3.2274
5 1.4835 2.5819 3.6698 5.5708
10 1.5557 2.8789 4.2234 6.6266

Erdoganet al.[17]

0.1 1.2963 1.8246 2.3140 3.1544
0.2 1.3058 1.8751 2.4031 3.2981
5 1.4946 2.5730 3.6573 5.5704
10 1.5740 2.8736 4.2140 6.6319

Table 4: The normalized mode-I SIF for an edge-cracked under the constant tensile
stress loading with two types of auxiliary fields and three different sizes of the
integral domain

b×c E2
E1

KI
σt
√

πa(a = 0.5)
Homogeneous auxiliary field Non-homogeneous auxiliary field

0.1×0.2

0.1 3.5543 3.5597
0.2 3.3209 3.3271
5 2.3689 2.3710
10 2.1797 2.1823

0.1×0.3

0.1 3.5710 3.5735
0.2 3.3352 3.3387
5 2.3810 2.3841
10 2.1903 2.1940

0.15×0.3

0.1 3.5823 3.5870
0.2 3.3407 3.3462
5 2.3894 2.3925
10 2.1987 2.2003
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Table 5: The normalized mode-I SIF for an edge-cracked under the linear stress
loading with two types of auxiliary fields and three different sizes of the integral
domain

b×c E2
E1

KI
σb

√
πa (a = 0.5)

Homogeneous auxiliary field Non-homogeneous auxiliary field

0.1×0.2

0.1 2.1734 2.1785
0.2 1.9117 1.9148
5 1.1728 1.1750
10 1.0731 1.0762

0.1×0.3

0.1 2.1841 2.1895
0.2 1.9226 1.9265
5 1.1819 1.1850
10 1.0810 1.0832

0.15×0.3

0.1 2.1950 2.2003
0.2 1.9318 1.9364
5 1.1902 1.1946
10 1.0887 1.0913

Table 6: The normalized mode-I SIF for an edge-cracked under the constant strain
loading with two types of auxiliary fields and three different sizes of the integral
domain

b×c E2
E1

KI
σ0

√
πa (a = 0.5)

Homogeneous auxiliary field Non-homogeneous auxiliary field

0.1×0.2

0.1 2.2917 2.2951
0.2 2.3808 2.3858
5 3.6781 3.6826
10 4.3412 4.3490

0.1×0.3

0.1 2.3013 2.3052
0.2 2.3891 2.3947
5 3.6890 3.6981
10 4.3572 4.3630

0.15×0.3

0.1 2.3095 2.3142
0.2 2.3985 2.4035
5 3.7012 3.7088
10 4.3706 4.3721
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Table 7: The normalized SIFs for a slanted edge-cracked plate with two types of
auxiliary fields

Method η
Homogeneous auxiliary fieldNon-homogeneous auxiliary field
KI/ε̄E1

√
πa KII/ε̄E1

√
πa KI/ε̄E1

√
πa KII/ε̄E1

√
πa

MLPG

0 1.462 0.621 1.462 0.621
0.25 1.320 0.553 1.331 0.560
0.5 1.209 0.498 1.215 0.502
0.75 1.094 0.450 1.098 0.453

1 0.995 0.407 0.998 0.409

B.N.Rao et al.[2]

0 1.448 0.610 1.448 0.610
0.25 1.313 0.549 1.312 0.549
0.5 1.193 0.495 1.190 0.495
0.75 1.086 0.447 1.082 0.446

1 0.990 0.405 0.986 0.404

Table 8: The normalized SIFs for a slanted edge-cracked plate with two types of
auxiliary fields and three different sizes of the integral domain

b×b
Homogeneous auxiliary field Non-homogeneous auxiliary field
KI/ε̄E1

√
πa KII/ε̄E1

√
πa KI/ε̄E1

√
πa KII/ε̄E1

√
πa

0.10×0.10 1.209 0.498 1.215 0.502
0.12×0.12 1.215 0.502 1.223 0.507
0.15×0.15 1.218 0.503 1.228 0.510
0.10×0.10 0.990 0.405 0.998 0.409
0.12×0.12 0.994 0.407 1.002 0.412
0.15×0.15 0.997 0.409 1.005 0.414




