PERFORMANCE SIMULATION OF MUD PUMP VALVE WITH A DAMPER CHAMBER BY FINITE ELEMENT METHOD

Bohdan Kopey, Volodymyr Kopey

Summary

The valve and seat in modern mud pumps for oil and gas well drilling are expendable pump parts. New types of valve with a damper chamber without rubber or polyurethane seal and with metal-to-metal contact area and heavy-duty load bearing capacity have been elaborated. Lighter weight body of plate characterizes this design. In comparison with the valve of ordinary construction a valve with a damper chamber contains additional structural elements, which in the moment of setting on of the plate forms the chamber of the promoted pressure between a seat and plate. It is considered that application of damper chamber will decrease the shock loadings or a?ohammer-effecta?? at the setting of plate. However, for development of reliable working construction it is necessary to resolve next basic problems: 1. To calculate the optimum size of clearances in damper chamber. 2. To define speed of landing of plate at the entrance in a damper chamber. 3. To overcome hydroabrasive wear in the clearances of damper chamber as a result of high speeds of mud flow. It is possible to resolve first two problems by the mathematical model of work of mud pump valve with a damper chamber. For possibility of resolving of mathematical model it is necessary to define the coefficient of discharge in valve by the computer design of fluid flow, as a nonlinear function depending on the height of getting up of plate above a seat. The computer three-dimensional parametric model of valve with a damper chamber has been developed for the valve assembly a"-7 of triplex single action pump. A parametric model give a possibility to change the height of getting up of plate H and the geometrical parameters of seat and plate and clearances in damper chamber. By a programmatic com