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Summary
In this paper, a mathematical model of synthetically optimizing navigation per-

formances and structural properties for principal-dimensions-limited ships is con-
structed. Basing on parallel algorithm, genetic algorithm (GA) and chaos algo-
rithm, then a parallel genetic chaos algorithm basing on delicate variables’ seg-
ments is advanced. This composite algorithm is programmed by VC++ into soft-
ware which has a user-friendly graphical interface of good interactivity and applied
to solving that mathematical model of synthetically optimizing navigation perfor-
mances and structural properties for principal-dimensions-limited ships.

Quantities of computation results of different solving methods show that com-
pared with other methods such as GA, chaos algorithm and their parallel algo-
rithms, this composite algorithm can overcome GA’s premature convergence and
is reliable and efficient so that it lays a solid foundation for form optimization and
design evaluation of principal-dimensions-limited ships.

keywords: navigation performance, structural property, synthetical optimiza-
tion, parallel genetic chaos algorithm, delicate variable’s segment

Introduction
Optimization theory is now widely applied to science research, business man-

agement, military affairs and many other fields.

Optimization methods can be divided into conventional and modern. The for-
mer usually can’t avoid falling into local optimization so that it’s not suitable for
complicated optimization of multi-variable, multi-constraint and multi-objective
function. Genetic algorithm, one of modern optimization methods, has strong
global optimization ability so that it has been applied to complicated optimization
of ship engineering. But to those optimizations which have many design variables,
it’ll take a long time for GA to compute and if cutting down the GA generation,
it’s very likely to develop premature convergence. Therefore, the authors bring
forward a parallel genetic chaos algorithm based on delicate variables’ segments
and succeed in applying this composite method to the synthetical optimization of
navigation performances and structural properties for principal-dimensions-limited
ships.

Parallel genetic chaos algorithm for optimization solution
GA is a new kind of optimization method developed on the basis of Darwin’s

Evolutionism and Mendel’s genetics theory of random exchange. Compared with
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traditional optimization methods, GA has many advantages such as fast compu-
tation speed, strong ability of global search and good robustness. Great deal of
research and application indicate that GA has outstanding capability of solving
complicated synthetical optimization.

GA, however, is serial in substance so that it costs much time to compute and
has relatively lower efficiency when solving optimizations that involve many design
variables. Parallel algorithm gives us the idea of combining them to quicken the
computation.

On the other hand, GA tends to converge prematurely when dealing with opti-
mizations that have multiple objective functions and multiple constraint conditions
which result in extraordinarily big population size and very complex fitness func-
tion. Thereby chaos algorithm again gives the authors an idea of adding it to the
combined parallel genetic algorithm to overcome the shortcoming.

The parallel genetic chaos algorithm based on delicate variables’ segments
solves the optimization in such a way:

(1) Divide each delicate variable’s value range into several segments and cross
these segments completely (Delicate variable is variable whose little change of
value will arouse great change of objective function’s value). Then combine
each segments group with remaining variables’ value ranges as the GA’s op-
eration scope. Finally, assign a value to GA’s population size and run GA for
adequate generations. For example, an optimization has 6 design variables, 2
of which are delicate variables. The value range of one is divided into 3 equal
segments and the value range of the other is divided into 4 equal segments.
We can get 12 segments groups after crossing these 7 segments completely by
3×4. Combine each segments group with the other 4 variables’ value ranges
and 12 operation scopes for GA are obtained in the end.

(2) On the base of 1), pick out several best results of GA and compute again by
chaos algorithm over a certain interval around each best result in order to find
the final best result.

GA’s essential procedure

(1) Coding: Each design variable is regarded as a gene and coded for computer
to compute. There’re many coding methods such as binary coding, denary
coding. In this paper, we apply floating-point number method for the sake of
coding and decoding many variables quickly.

(2) Determining the fitness function: the string composed of all the genes is called
chromosome. To an optimization without constraint conditions, chromosome’s
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objective function is its fitness function. To an optimization with constraint
conditions, its fitness function value should include information from two as-
pects: chromosome’s objective function value and degree of satisfying the con-
straint conditions.

(3) Initializing the population: In this paper, we chose 6 items as the information
of each generation. They’re chromosome, its fitness value, its relative fitness
value, its cumulative fitness values, lower limit of every gene and upper limit of
every gene. According to the population size, same amount of values are ran-
domly chosen within each design variable’s limit to compose the chromosomes
as the first generation population.

(4) Genetic operations:

Selection operator: It’s very important for evolution. It selects the best chro-
mosomes of current generation and reserves them as samples to compare
with the next generation. Many methods have been put forth. The authors
use the roulette method.

Crossover operators: pc is one important parameter in GA system. In this
paper, pc is 0.85.

Mutation operator: pm is another parameter, in this paper pmis 0.1.

(5) Stopping the computation: We set a maximal generation number. When the
program execute to that generation, it will stop automatically. In the course of
computation, we can also trace its convergence; when the difference between
current and last generation fitness values is less than a certain value (for exam-
ple, 1.0e-5), we will stop it in advance.

Chaos algorithm
Chaos optimization is implemented by chaos variable. The authors choose a

widely-used Logistic mapping to produce the chaos variable:

zk+1 = μzk(1− zk)

where the time of iterative mapping k=0, 1, 2, . . . .

It’s easy to prove that when μ=4, above equation is fully in chaos state, which
means by iterative mapping, the equation can randomly produce all values within
(0, 1) except 0.25, 0.5 and 0.75. Because chaos algorithm is sensitive to initial
value, n different chaos variables can be obtained by assigning n different initial
values within (0, 1) to the equation except 0.25, 0.5 and 0.75.

In this paper, the authors adopt twice-mapping chaos algorithm. Its steps are as
follows:
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(1) Initialization: Assign n different initial values zi,0 to the equation and get n
different chaos variables zi,k+1 (i =1, 2, . . . , n).

(2) First mapping as the following formula shows:

xi,k = ci +dizi,k

where ci and di are constants that convert chaos variable zi,k into optimization
design variable xi,k. If the range of design variable’s value is [ai, bi], then
ci = ai, di = bi −ai.

(3) Computation of the objective function value: Set Xk as the vector of xi,k and
its corresponding objective function value as fk. At the beginning, suppose the
optimal value f ∗ = f0 and its corresponding X0 as the optimal solution X∗.
During the process of computation, once any fk is larger than f ∗, set f ∗ = fk

and continue the computation, comparison and replacement.

(4) Second mapping: If f ∗ remains the same value after several times of step 3),
map secondly as the following formula shows:

xi,k′ = x∗i +αizi,k′

where k′ is iterative time of second mapping (k′=0, 1, 2, . . . .), αi is a small
adjustive constant.

(5) Computation of the objective function value: Similar to step 3), compute fk′ of
Xk′.

(6) If termination condition is satisfied, stop the algorithm; if not, repeat step 5).

Mathematical model of synthetical optimization
There’re 3 parts of synthetical optimization of navigation performances and

structural properties for principal-dimensions-limited ships: navigation performances,
structural mechanics properties and limited principal dimensions.

The authors use the weighted sum of rapidity, sea-keeping ability and ma-
neuverability as the sub-objective function of navigation performances; use the
weighted sum of static and dynamic properties as the sub-objective function of
structural mechanics properties; and use function whose value changes in a linear
way according to the ship principal dimensions as the sub-objective function of
limited principal dimensions. The weighted sum of these 3 sub-objective functions
is just the general objective function. Stability, buoyancy and some other charac-
teristics as well as limits of design variables form the constraint conditions. The
mathematic model is described in detail as follows:
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Design variables
The synthetical optimization of navigation performances and structural proper-

ties for principal-dimensions-limited ships involves many factors. After analyzing
and comparing their importance, 12 parameters are selected as the main design vari-
ables: ship length L, ship breadth B, draft T , block coefficient CB, mid-ship section
coefficient CM, water plane coefficient CW P, longitudinal position of buoyancy cen-
ter xCB, diameter of screw propeller DP, disk area ratio AE/AO, pitch ratio P/DP,
rotation speed of propeller N and target velocity Vt . Their vector is as follow:

X = {L,B,T,CB,CM,CW P,xCB,DP,AE/AO,P/DP,N,Vt}T

Objective function
Suppose P(X) is the general objective function, PN(X) is the sub-objective

function of navigation performances, PS(X) is the sub-objective function of struc-
tural mechanics properties and PC (Y ) is the sub-objective function of limited prin-
cipal dimensions. Then,

P(X) = APPN(X)+BPPS(X)+CPPC(Y)

PN(X) = AP1Csp +AP2Mv +AP3Sv; PS(X) = BP1J(X)+BP2D(X)

and,

0 < Y ≤ Y1, PC(Y) = 0; Y1 < Y ≤ Y2, PC(Y) = C1(Y −Y1);

Y2 < Y ≤ Y3, PC(Y) = C2(Y3−Y ); Y3 < Y, PC(Y) = 0.

Where AP ≥ 0, BP ≥ 0, CP ≥0, AP + BP +CP=1; AP1 ≥0, AP2 ≥0, AP3 ≥0, AP1 +
AP2 + AP3=1; BP1 ≥0, BP2 ≥0, BP1 + BP2=1. Y is one of ship’s limited principal
dimensions; Y1, Y2 and Y3 are custom values of this principal dimension according
to different limiting requirements.Csp, Mv and Sv are respectively normalized forms
within [0,1] of rapidity criterion C (Csp = PE/Δ2/3V 3

s ηoηRηH , Δ—displacement,
PE—effective power, ηo—screw efficiency in the open, ηH —hull efficiency, ηR—
relative rotation efficiency), maneuverability criterion M (M = pLVarL + pT VarT +
pCVarC, VarL—straight line stability coefficient, VarT—turning quality coefficient,
VarC—course change coefficient, pL,pT and pC —- weight numbers) and sea-keeping
ability criterion S(S is the weighted sum of normalized forms of pitching angle and
heaving amplitude within [0,1]). J(X) and D(X) are normalized forms within [0,1]
of static and dynamic criteria of ship structure.

Constraint conditions
Equation constraints

1) Balance between buoyancy and displaced weight: ρLBTCB = Δ; 2) Balance
between effective thrust TE and resistance R; 3) Balance between torque received
by screw from main engine Md and torque from hydrodynamic resistance Mp.
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Inequality constraints
1) Ranges of 12 design variables’ values; 2) Cavitation requirement for screw

propeller according to Kelly formula; 3) Initial stability height GM > h; 4) Maximal
rolling angle Φa ≤ b˚; 5) Relative turning diameter Ds′ < c.

Example
Optimization computation

The mathematic model shows that the synthetical optimization of navigation
performances and structural properties for principal-dimensions-limited ships in-
volves at least 12 design variables, 3 equation constraints and 5 inequality con-
strains (If including the upper and lower limit of each design variable, there’ll be
28 inequality constrains). Evidently, it’s a very complicated engineering optimiza-
tion. Applying the parallel genetic chaos algorithm based on delicate variables’
segments, the authors programme the solving software.

Here take a large-sized medium-speed inland transport ship for example. Its
displacement is 43000t, breadth is limited no more than 29.5m and it has double
propellers. The ranges of its design variables’ values are listed in Tab. 1:

Table 1: Range of Design Variables
L B T CB CM CW P xCB DP AE/AO P/DP N Vt

(m) (m) (m) (m) (m) (r/m) (kn)
Upper limit 219 28 8.8 0.59 0.94 0.74 -2.0 5.7 0.5 0.5 129 23.5
Lower limit 240 31 9.7 0.696 0.99 0.78 0 6.5 0.9 1.1 160 26

The authors assign values as: AP=0.63, BP=0.25, CP=0.12; AP1=16/21, AP2=5/21,
AP3=0; BP1=1, BP2=0; Y = B, Y1=28.5, Y2=29.5, Y3=29.7; C1=0.8, C2=4; J(X) =
(10000−0.28L0.9624B0.9014T 0.883C0.037

B )/3000.

On a Pentium 4 computer (1.5GHz/CPU clock speed, 512MB/memory and
40GB/hard disk storage capacity), the authors run GA of 6000 generations, paral-
lel GA of 600 generations, chaos algorithm, parallel chaos algorithm and parallel
genetic chaos algorithm. The results are as Tab. 2 shows:

The results also include other 20 parameters which are omitted here such as
wake fraction, thrust deduction fraction, initial stability height, rolling period, rud-
der area and wetted area, etc.

From the results, we can see that 3 equation constraints are satisfied to a degree
of more than 99.8% and the inequality constraints are all satisfied to a degree of
100%. These indicate that this solving method is reliable.

Then, three kinds of objective function are calculated with parallel genetic
chaos algorithm of 300 generations. The results are as Tab. 3 shows:
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Table 2: Calculation Results of Different Methods
Items GA Chaos algorithm Parallel GA Parallel chaos Parallel genetic chaos algorithm

(6000 generations) (600 generations) algorithm (300 generations)
General objective
function value

0.77904 0.76478 0.79500 0.78934 0.80721

L(m) 227.28 227.1 225.5 220.6 220.4
B(m) 29.44 29.47 29.50 29.50 29.49
T (m) 9.124 9.160 9.081 9.430 9.235
CB 0.6837 0.6812 0.6910 0.6802 0.6955
CM 0.9746 0.9796 0.9900 0.9763 0.9870
CW P 0.7439 0.7545 0.7400 0.7446 0.7432
xCB (m) -1.1423 -1.6776 -1.297 -1.882 -1.651
DP (m) 6.391 6.169 6.300 6.345 6.386
AE/AO 0.5033 0.5888 0.5277 0.5292 0.5096
P/DP 0.8046 0.8895 0.8919 0.8630 0.8681
N (r/m) 140.2 137.6 131.1 133.0 130.0
Vt (kn) 23.84 23.66 23.58 23.50 23.51
1/Csp 69.30 67.42 70.25 69.71 70.85
Quantity of screw 2 2 2 2 2
Screw type AU AU AU AU AU
Quantity of blade 4 4 4 4 4
Displacement (t) 43081.27 43057.08 42999.07 43002.96 43012.00
TE (kN) 1892.91 1866.33 1835.10 1822.67 1824.38
Resistance (kN) 1893.04 1867.18 1835.07 1822.80 1824.91
Mp (kN·m) 2241.14 2274.91 2268.47 2236.18 2252.04
Md (kN·m) 2241.29 2275.95 2268.44 2236.34 2252.70
ηo 0.6862 0.6718 0.6886 0.6884 0.6910
PE (kW) 23210.01 22722.55 22262.63 22035.48 22066.83
Main engine
power (kW)

33459.24 33504.06 31833.39 31743.65 31264.52

Froude number
(Fr)

0.2598 0.2580 0.2581 0.2600 0.2602

Analysis
5 points of conclusions are drawn after comparing and analyzing those different

solving methods from Tab. 2

a. The values of 6000-generationed GA’s and 600-generationed parallel GA’s gen-
eral objective functions are respectively 0.77904 and 0.79500. The former is
lower than the latter by 2.05%, which means obvious premature convergence of
GA.

b. The values of chaos algorithm’s and parallel chaos algorithm’s general objective
functions are respectively 0.76478 and 0.78934. The former is lower than the
latter by 3.21%, which means parallel algorithm is more efficient.

c. The parallel chaos algorithm is based on segments of delicate variables (That
is to say, divide delicate variables’ value ranges into segments and cross these
segments completely. Subsequently, combine each segments group with remain-
ing variables’ value ranges to form the operation scopes. At last, compute by
chaos algorithm within each scope in a parallel way). So besides b, we can also
reach another conclusion from the comparison between the values of chaos algo-
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rithm’s and parallel chaos algorithm’s general objective functions that algorithm
based on delicate variables’ segments is better.

d. The values of parallel genetic chaos algorithm’s general objective function is
0.80721. It’s higher than those of parallel chaos algorithm and parallel GA
by 2.26% and 1.54%. These 2 data tell us that parallel genetic chaos algo-
rithm based on delicate variables’ segments is the best among these methods
in solving complicated engineering optimizations of multi-objectives, multi-
constraints and multi-variables.

Conclusion
In this paper, a parallel genetic chaos algorithm based on delicate variables’

segments is put forward and applied to synthetical optimization of navigation per-
formances and structural properties for principal-dimensions-limited ships. Com-
putation results show that this solving method not only can overcome GA’s prema-
ture convergence, but also is of high efficiency. It provides an effective way for
engineering optimization design of multi-objectives, multi-constraints and multi-
variables. Plentiful optimization examples indicate that this software runs steadily
and reliably. It lays a solid foundation for overall evaluation of ship design and
integrated decision of ship parameter. In the meanwhile, we feel that it’s a worthy
and meaningful research on how to form the mathematical model of more compre-
hensive ship optimization (for instance, adding ship general layout to optimization
or adding navigation environment as constraint) and how to find more suitable and
better solving methods.
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