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ABSTRACT 
This paper presents some new work on the dy-

namics of cantilevers containing and/or immersed 
in external axial flow. The state of understanding of 
the dynamics, prior to this, is first reviewed. Then, 
some new work on: (i) the nature of the compressive 
force associated with the jet issuing from the free 
end of the pipe; (ii) the see-saw progress in under-
standing the dynamics of aspirating cantilevers — 
from the initial assessment in 1985 that flutter oc-
curs at infinitesimally or quite small flow velocities, 
to the view that it does not occur at all, then that it 
may occur provided that dissipation is not too high, 
and finally that it does appear to     occur, via ex-
periments and CFD simulations; (iii) the nonlinear 
dynamics of pipes conveying fluid; (iv) the dynamics 
of systems subjected to internal flow which, after 
discharge, is forced to flow axially over the exterior 
of the pipe, predicting flutter at very low flow ve-
locities. 

1.  INTRODUCTION 
It has now been firmly established that the pipe 

conveying fluid has become an effective paradigm 
for dynamics of flexible systems conveying or     
immersed in axial flow, and indeed for all mass- or 
momentum-conveying systems (Païdoussis 1987, 
1998, 2004; Païdoussis and Li 1993).  In a recent 
paper, the radiation of knowledge gained to other 
dynamics problems across the wider realm of Ap-
plied Mechanics is charted (Païdoussis 2008):  
specifically, for cylinders, plates and panels in axial 
flow, and cylindrical shells immersed or containing 
flow. 

On the other side of the coin, it has been shown 
how some of this curiosity-driven research, con-
ducted with no engineering application in mind, has 
become directly applicable and useful in engineer-
ing and physiological applications 10, 20 or 30 
years later (Païdoussis 1993). Examples are pipe- 
and shell-type Coriolis mass-flow meters, towed 
flexible barges and towed seismic arrays for oil/gas  
 

 
 
exploration, ichthyoid (fish-like) propulsion  
systems, deep-water risers, heat exchangers and nu-
clear reactor internals, and for pulmonary and 
haemodynamics research. 

In this light, it is of interest to record and assess 
new developments concerning the dynamics of 
pipes conveying fluid, and by extension cylinders 
immersed in axial flow, both from the fundamentals 
viewpoint and for potential applications. Accord-
ingly, in this paper, some new developments and 
new findings in this area are reviewed. Inevitably, 
along with new insights, some new questions arise, 
requiring further research for their resolution.  

As the dynamics of cantilevered pipes and cylin-
ders in axial flow is of particular interest from the 
dynamics point of view, and also in the interests of 
narrowing the scope and therefore probing deeper, 
this paper does not deal with cylinders or pipes with 
both ends supported, even though some interesting 
new research has been conducted in this area also; 
see, e.g., Karagiozis et al. (2005, 2007a,b, 2008), 
Modarres-Sadeghi et al. (2005, 2007a, 2008a). 

2.  BASIC DYNAMICS 
Before embarking on the discussion of new  

developments, it is instructive to review the basic 
dynamics of pipes conveying fluid. This is a non-
conservative, gyroscopic system, a circulatory sys-
tem in Ziegler's (1968) classification. It is therefore 
not surprising to find, both theoretically and ex-
perimentally, that at sufficiently high flow velocity, 
the system loses stability by flutter, specifically by 
single-mode flutter. In greater detail, the dynamical 
behaviour is as follows: (i) as the flow velocity U is 
increased, the cantilever is subjected to increasing 
flow-induced damping; (ii) at higher U this damping 
begins to fade, eventually becoming negative; (iii) 
at sufficiently high U, flow-induced negative damp-
ing exceeds the positive structural one, and thus 
amplified oscillations (flutter) ensue.  



From the nonlinear perspective, the loss of stabil-
ity is via a Hopf bifurcation, subcritical or   
supercritical (Bajaj et al. 1980), and the flutter can 
be two-dimensional (planar) or three-dimensional 
(orbital) (Bajaj and Sethna 1984; Modarres-Sadeghi 
et al. 2008b). For the plain system, unadorned by 
additional springs or masses, this is a solitary bifur-
cation; with increasing flow, the amplitude of the 
flutter increases and the modal content in terms of 
cantilever-beam modes is continually enriched.  
Additional bifurcations do occur for the system em-
bellished by springs and masses (just as the 
proverbial one, embellished by bells and whistles), 
and the dynamics becomes more complex and more   
interesting, as we shall briefly discuss in the follow-
ing. 

The mechanism underlying the generation of flut-
ter was first elucidated by Benjamin (1961a) and 
elaborated upon by Gregory and Païdoussis 
(1966a); see Païdoussis (1998). In a putative cycle 
of periodic oscillation, the work done by the fluid 
on the pipe is  
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where M is the mass per unit length of the conveyed 
fluid, T is the period, Lw is the velocity of the free 
end (at x = L), and Lw′ is the slope of the free end 
relative to the stretched-straight, undeformed equi-
librium configuration. Clearly, when U is 
sufficiently small, the first term in the bracketed ex-
pression is dominant, and 0;WΔ <  i.e. any initial 
oscillation is damped out, assuming the flow is the 
only energy source. If U is sufficiently high, how-
ever, and the product L Lw w′ negative on the 
average, then WΔ may become positive, leading to 
flutter. 

For reference, the simplest form of the equation 
of motion is  
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where EI is the flexural rigidity and m the mass of 
the pipe per unit length.  Physically, the small-U 
damping regime is associated with the dominance of 
the Coriolis force, 22 ( / )M U w x t∂ ∂ ∂  in the equa-
tion of motion, which can be viewed as 
2 ,M Uφ with / ;w xφ = ∂ ∂  this same term gives 
rise to the first term in the brackets of (1). The  
second term is associated with the centrifugal force 

2 2 2( / )M U w x∂ ∂  in the equation of motion, which 
can be viewed 2 / ,M U R  with R the local radius of 
curvature; an alternative interpretation is that this is 
a compressive force 2 2( / ),T w x− ∂ ∂  where T would 
be a tension and T− a compression. 

 

3.   THE COMPRESSIVE FORCE  
         2 2 2( / )M U w x∂ ∂  

Physically, it is clear that, once U is high enough 
for the centrifugal/compressive force to overcome 
the flexural restoring forces (a situation that, if both 
ends of the pipe were supported, would give rise to 
divergence (buckling)), local bending would be in-
creased; in the absence of a downstream support, 
this leads to a lateral movement of the deformed 
pipe, resisted by the Coriolis force as the angular 
velocity increases. The balance of these two tenden-
cies (to exaggerate bending and hence lateral 
motion, and to resist its further increase) is at the 
core of the underlying mechanism for flutter. 
 However, although the Coriolis force is concep-
tually easy to accept, it is more difficult to conceive 
that fluid flow through the pipe can generate a com-
pressive force; (indeed, it would be more  
intuitive to think that the flow generates a tensile 
force). To demonstrate its existence, a simple ex-
periment was mounted (Rinaldi and Païdoussis 
2007), in which a vertical cantilevered pipe convey-
ing fluid was fitted with a special end-piece. This 
end-piece could either (i) allow the flow to go 
straight through or (ii) block it and force it out of 
several radial holes (Fig. 1). In arrangement (i), the 
system fluttered at a value of U slightly different 
from that without the end-piece. In arrangement (ii),  

 

 
Figure 1: The two possible flow paths at the end of 
the cantilever; when one is open, the other is 
blocked. 

however, the system remained stable, in its original 
stretched-straight equilibrium. Clearly, by momen-
tum considerations, the fluid jet emerging from the 



  

free end and impacting on the blocked axial exit of 
the end-piece, generates a tensile force equal to 

2M U . Hence, in the equation of motion we now 
have    two terms, the compressive/centrifugal force 

2 2 2( / )MU w x∂ ∂ and the new tensile force 
2 2 2( / ),MU w x− ∂ ∂  cancelling each other out. 

However, beyond this being a neat and quaint lit-
tle experiment, it throws light into the mechanism of 
flutter that will be useful in what follows: the com-
pressive force under discussion is the motive force 
behind the generation of flutter. 
 A parenthesis here on follower-force flutter of a 
cantilever (Beck's problem) is useful. It is recalled 
that a cantilever subjected to a compressive force 
remaining tangential to the free end (a "follower 
force") loses stability by flutter. To demonstrate ex-
perimentally its existence, the author once said that 
it would require "a rocket engine mounted on the 
free end of a beam column, or something similar!" 
(Païdoussis 1986), implying that this would be all 
but practically impossible. Yet, shortly after, Sugi-
yama et al. (1990) did just that! In the case of 
Beck's column, involving no Coriolis forces, the 
flutter is a two-degree-of-freedom coupled mode 
flutter, but flutter nonetheless, induced by the tan-
gential compressive force. The action of the 
compressive force of the discharging jet on the can-
tilevered pipe is quite similar. 

4. ASPIRATING PIPES 

4.1.  Background and status till 2005 

In some areas of the Pacific Ocean, the sea floor 
is strewn with valuable minerals, such as manganese 
nodules. Inevitably, someone had the bright idea 
that it would be simpler to mine these minerals via a 
gigantic vacuum cleaner at sea than to dig them up 
on land (Fig. 2); refer, e.g. to Chung (1996), Deepak 
et al. (2001) and Xia et al. (2004). 

It occurred to the author that if the "Miner" in 
Fig. 2 hit a ridge, the system would become tempo-
rarily a cantilevered pipe with an end-mass; the 
question that sprung to mind was: would it then flut-
ter, just as a cantilever discharging fluid would? The 
first analysis on the aspirating cantilever was con-
ducted by Païdoussis and Luu (1985), simply 
replacing U by U− in the equation of motion and 
taking gravity and the end-mass into account. The 
intriguing result was obtained that the dynamics of 
the aspirating cantilever (with U− ) was the mirror-
image of that of the discharging one (with + U). 
Thus, in the absence of dissipation, the system 

would flutter at infinitesimal |U |, and regain stabil-
ity at exactly the same value of  |U | at which the 
discharging cantilever would develop flutter! 

This prediction was viewed with considerable 
skepticism by the authors themselves, if not others, 
and an experiment was mounted in 1986 in an appa-
ratus shown diagrammatically in Fig. 3, involving 
an elastomer pipe in a reservoir (tank) such that  wa-
ter supplied to the sealed tank would enter the pipe 
at the free end and exit at the support —

 
Figure 2: The ocean-mining system, involving an 
aspirating pipe. 
effectively being aspirated. As the flow velocity was 
increased to the maximum possible, the cantilever 
remained disconcertingly inert. It was reasoned that 
either the theory was incorrect or the damping  as-
sociated with oscillation of the pipe in the 
surrounding water was strong enough to raise 

 
Figure 3: The apparatus used in 1986 for experi-
ments with an "aspirating pipe". 



  

the threshold of instability to unattainable levels. 
Part of the problem was that the pipe collapsed as a 
shell (in the 2nd circumferential mode) near the up-
stream end when the flow was high, because of the 
large inwards intramural pressure at that point. 
More   experiments were planned with the upper 
part of the pipe in compressed air, but then "The 
Accident"  intervened (Païdoussis 1999): the system 
was left under pressure overnight and a hose-clamp-
secured joint slipped in the small hours: the water 
shot up to the ceiling and then showered all over the 
assembled instrumentation surrounding the experi-
ment; some of it was irretrievably ruined, and the 
experiment was abandoned in disgust. The appara-
tus used and the accident are remarkably similar to 
those  related to Richard Feynman's "sprinkler prob-
lem" (Gleick 1992).† 

Feynman used to amuse his physicist colleagues 
at the Institute for Advanced Study at Princeton by 
asking whether a rotary sprinkler as shown in 
Fig. 4(a), would rotate in the same sense when it is 
aspirating fluid as in Fig 4(b), or in the opposite 
sense. Feynman could apparently argue convinc-
ingly either way. Eventually, Feynman decided to 
do an experiment, which was remarkably similar to 
the author's. He immersed the lawn sprinkler into a 
glass jar filled with water, with an outlet connected 
to the sprinkler and a compressed air supply into the 
jar, to force the water into the sprinkler and out. 
With increasing pressure and flow, the sprinkler re-
fused to budge, up to the point where the glass jar         
exploded, spraying water all over. The result was 
that Feynman was banished from the laboratory 
henceforth! 

 
Figure 4: (a) The discharging rotary sprinkler; 
(b) the aspirating sprinkler. 

Returning the aspirating pipe, clearly, we have a 
paradox. Theory predicted that the aspirating pipe 
loses stability for infinitesimal (or very small) flow 
velocity, but experiments showed the system to   
remain stable, at least to the maximum attainable 
flow prior to pipe collapse. Hence, reversing the

                                                           
† The author is grateful to Dr David J. Maull, who made him 
aware of this analogous problem, while on a visit to Cambridge 
in 1995.  

flow direction in the experiments did not invert the 
stability behaviour of the pipe. Similarly, in Feyn-
man's sprinkler, reversing the flow direction did not 
reverse (nor replicate) the direction of rotation. 

That remained the status of this paradox till 1999, 
when a paper entitled "Aspirating pipes do not flut-
ter at infinitesimally small flow" was published 
(Païdoussis 1999). The main thesis behind this as-
sertion was that in the aspirating case there is a 
depressurization at inlet, because the intake flow is 
not a reversed jet-flow, but something like a sink. If 
the fluid in the pipe is uniformly pressurized to a 
pressure ,p  the equation of motion becomes  
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where A is the internal cross-sectional area of the 
pipe. If there is a depressurization at inlet ( 0),p <  
this would apply throughout the pipe (over and 
above the friction-induced distributed pressure loss 
which is totally counterbalanced by the induced 
traction; see (Païdoussis (1998)). It was estimated 
that for  pure sink flow, 2 2 ,pA AU M Uρ= − = −  
and hence the compressive/centrifugal term in (3) 
disappears. Perhaps influenced by the fact that this 
is the motive force for flutter (Section 3), it was 
concluded, without the benefit of any calculations, 
that flutter cannot occur. 

In the same way, for the sprinkler, it was argued 
that the centrifugal force 2M U R  on the curved 
pipe would be exactly cancelled by the depressuri-
zation force / ,pA R with 2.pA M U= −  

As pointed out by Kuiper and Metrikine (2005), 
however, the conclusion that the aspirating pipe is 
immune to flutter could be erroneous for two  
reasons: the Coriolis force was "conveniently" left 
out of the picture, and the depressurization         
may have been overestimated. Using stream-tube/    
Bernoulli-equation arguments, they found  pA −  
1 2
2 ,M U even though conceding that 

2M U pA− <  1 2
2 .M U< −  

This forced a reappraisal of the dynamics of the 
aspirating system by Païdoussis et al. (2005), to be 
discussed in the next section. 

Suffice it to say here that, indeed,  
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where U has been replaced by U−  vis-à-vis  
 



  

equation (1); hence, in principle, flutter would be 
possible even if 2 0,M U pA+ =  as a result of 

0.p <  But 0WΔ >  could still arise via the first 
term. This would suggest that the nonobservance of 
flutter in the experiment was likely due to the high 
damping associated with the surrounding water. 

4.2. Reappraisal of the analytical model 

 With the benefit of the doubts raised by Kuiper 
and Metrikine and some useful insights by Pramila 
(1992), the analytical model was re-evaluated  
(Païdoussis et al. 2005) by making three key as-
sumptions, as follows. 

(i) The mean flow velocity of the fluid just fac-
ing the inlet is ,v−  where 1

20 v U< <  — with 

0v =  as in Païdoussis (1999), and 1
2v U=       

according to Kuiper and Metrikine (2005); introduc-
ing / ,v U α= we have 0 α<  1

.2<  
(ii) There is a sudden change in the fluid veloc-

ity as the fluid enters the pipe: in the direction 
tangential to the pipe centreline (the ξ-direction in 
Fig. 5) from v−  to U− and in the transverse z-
direction from tosin L L Lv v w w Uwχ ′ ′− ≡ − −  if the 
fluid enters the pipe tangentially (Fig. 6(b)). The ax-
ial component gives rise to a depressurization 

2 where(1 ) , / .pA M U v Uα α= − − =  The trans-
verse component gives rise to a shear force at the 
free end 0.L LEI w M U w′′′ − =  The unrealistic sce-
nario where the flow vector v−  remains         
unchanged in the equilibrium direction was        also 
considered (Fig. 6(a)), giving LEI w′′′  

( ) 0.L LM U w U wα ′− − =  Hence, if we consider 
the intake to be not quite tangential but to lag 

 
Figure 5: (a) Free end of the pipe and definition of 
coordinates and the angle χ; (b) definition of the 
forces exerted by the fluid at the free end of the pipe 

 

slightly behind the motion, we may write the shear 
as  
 

( (1 ) ) 0,L L s LEI w M U w U wδ α′′′ ′− − − =  (5) 

where 0 1;sδ< <  as we shall see, δ s is closer to 1 
than to 0. 

(iii) There is an additional non-negligible ten-
sion induced by the flow near the free end of the 
pipe, on the pipe lips, such that ( )LT pA− =  

2 with (1 ) (1 ) ,M U γα γ− + being of O(1). 

 
Figure 6: (a) The unrealistic intake flow (vertical 
before entry); (b) tangential, follower entry of the 
flow into the pipe. 

Hence, taking into account the added mass of the 
surrounding fluid, Ma per unit length, introducing a 
viscous damping with coefficient c and viscoelastic 
damping in the pipe (with coefficient α*), and  
incorporating the shear force via a Dirac delta  
function ( ),x Lδ −  the equation of motion becomes 
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Some calculations were conducted with this model, 
with the following typical results: 
(a) if 0,sδ =  the unrealistic "vertical" flow entry 

condition of Fig. 6(a), the system remains stable 
for flutter irrespective of α, though it could de-
velop divergence, but at high flow velocities; 

(b) for 1sδ =  (tangential entry) and * 0,c α= =  
the system generally develops flutter; 



  

(c) for 1sδ =  and reasonable values of *and ,c α  
substantial flow velocities are needed for flutter 
to develop. 

  Hence, the overall conclusion is that (i) flutter is 
possible, but (ii) whether or for what flow velocity 
it occurs depends on the details of the intake flow, 
specifically on the parameters α and ,sδ  and also 
(iii) on the amount of dissipation in the pipe and 
from the surrounding fluid. It was concluded that 
the best way to assess these would be via CFD 
simulations, particularly in the vicinity of the intake, 
and work started on this at McGill in 2005, as dis-
cussed in Section 4.4. 

4.3. Experiments 

Recently, further applications of aspirating pipes 
have emerged, other than ocean mining of minerals, 
and hence the definitive answer as to whether aspi-
rating pipes flutter or not at reasonably low flow 
rates has assumed a degree of urgency. Specifically, 
long pipes aspirating cold water are part of the     
design for liquifying natural gas on a ship in the  vi-
cinity of the undersea production well, rather than 
transporting it to land and liquifying it there. Also, 
some considerable interest has been shown in the 
exploitation of the extremely important gas hydrate 
deposits (e.g. methane crystal deposits) in the    Arc-
tic and near-Arctic waters. 

Kuiper (2008) has conducted some experiments 
involving very long pipes aspirating water; the 
lower part of the pipe was immersed in the water, 
while the upper part was in air, in an effort to  
reduce dissipation and to obtain flutter, if it exists, 
within the range of flows attainable. The observa-
tions were rather curious. At a difficult-to-define 
precisely critical flow, orbital periodic oscillations 
of rather small amplitude were observed, which 
gradually declined, being succeeded by a quasi-
stationary state displaying very small, chaotic-
looking vibrations; and then back to periodic oscil-
lations, and so on. The amplitude A of the periodic 
oscillations was of the order of  0.1 m, for a pipe 
with diameter D = 0.075 m and length L = 4.75 m; 
thus A/D ~ 1.3 and A/L ~ 0.02. 

This, together with the alternating, quasi-bistable 
nature of the oscillation created doubts as to it being 
true flutter; e.g., supposing it could be related to a 
circulatory flow generated in the reservoir feeding 
the flow to the pipe. All possible "improvements", 
however, did not eliminate the oscillation, though 
some succeeded in reducing its amplitude further. 

Using a modified form of the apparatus in which 
"The Accident" occurred in 1986, new experiments 
were conducted at McGill (starting in 2007) using  
 

entirely air-flow (Fig. 7), the advantage being that 
dissipation with the surrounding fluid is reduced 
very substantially. The lower pressure loss in the 
pipe also eliminated the collapse near the support.  
Experiments were conducted with elastomer pipes 
( )15.9 mm, 424 mm ,oD L  in one case fitted 
with a central blade which confined motions to a 
plane. The observed behaviour was remarkably 
similar to Kuiper's: beyond a critical flow velocity 
the pipe started oscillating in an orbital path, some-
times clockwise, sometimes counterclockwise, at 
small frequency (~ 1 Hz). The oscillation was inter-
rupted by phases of smaller-amplitude shuddering 
quasi-chaotic motions.  The amplitude was quite 
small /( 0.012 to 1.2,oA D depending on the flow     
velocity; or, at most, / 0.044)A L = , much smaller 
than when the flow was discharging / .( 0.25)A L >  
When motions were 2-D, the amplitude was consid-
erably smaller, but the intervals of "shuddering" less 
pronounced. 

 
Figure 7: Modified form of the apparatus of Fig. 3: 
1. outer steel tank; 2. plexiglas "protector" to en-
sure no disturbance from the fluid flowing in; 
3. elastomer cantilevered pipe; 4. honeycomb to 
regularize the flow to pipe intake. 

Taking these two experiments together, along 
with the analytical findings summarized in the last 
paragraph of Section 4.2, it would appear that the 
aspirating system can, indeed, develop flutter at suf-
ficiently high flows, provided that dissipation is 
kept rather small. Nevertheless, in view of the  
several assumptions made in the analytical model 
and the peculiarity and smallness of the observed 
oscillations, corroboration by numerical simulation 
would obviously be highly desirable. 



  

4.4. CFD study of the aspirating pipe 

This study began in 2005 at McGill and,  
although not pursued full-time, began yielding use-
ful results only in 2007. The pipe was modelled in 
2-D in water via the ANSYS and FLUENT soft-
ware. Later, the more powerful CFX was used 
instead. It should be said at the outset that the prob-
lem of flow-induced instability, whether by dis-
charging or aspirating flow, proved to be much 
more resistant to CFD analysis, as compared, say, to 
cross-flow-related VIV (vortex-induced vibrations). 

The initial numerical experiments aimed at study-
ing the flow at the intake of an aspirating pipe, with 
the aim of leading to reasonable estimates of the  
parameters and  , sα γ δ  in equation (6). For this 
purpose a lateral or pendular oscillation of varying 
amplitude and frequency was imposed on the pipe. 
It was found that sδ  was very nearly 1,  so that the 
intake was nearly tangential, while the values of α  
and γ  used to obtain the results in Section 4.2 are 
in the correct range. 

A typical figure showing a flow-velocity vector 
plot for an oscillating, aspirating cantilever is shown 
in Fig. 8. 

 

 
Figure 8: Sample flow-velocity vector plot at intake 
of aspirating cantilever, obtained with ANSYS and 
CFX. 

The CFD analysis was pursued on the much more 
difficult question of whether self-excited oscilla-
tions are possible (Giacobbi 2007). The very fine 
grid necessary to model the flow near the intake, on 
the one hand, and the relatively large deformations 
of the fluid finite elements near the free end created 
problems; also, the slowness of the calculations (in-
volving days of running time on a Pentium 4, dual-

core computer with 2 GHz processor) militated 
against getting an easy answer. However, some pre-
liminary results have recently been confirmed and 
the answer is that self-excited oscillation, i.e. flutter, 
does occur at flow velocities near those observed 
experimentally. 

These results will not be elaborated here, as a 
more complete account will be given shortly else-
where (Giacobbi et al., 2008). 

5.  NONLINEAR DYNAMICS OF 
DISCHARGING CANTILEVERS 

A considerable amount of work has been con-
ducted on this topic recently which is worth 
mentioning, though space limitations preclude a  
detailed description. 

First, the nonlinear equations for 3-D motion 
were derived (Wadham-Gagnon et al. 2007), correct 
to O ( )3ε . Then the dynamics of the system in the 
presence of an additional support, made up of an  
array of springs, typically at 0.6 or 0.75L, was con-
sidered (Païdoussis et al. 2007). Typical dynamical 
behaviour, in some cases supported by experiments, 
is as follows: the system loses stability by planar 
flutter, and thereafter performs two-dimensional  
(2-D) or 3-D periodic, quasiperiodic and chaotic  
oscillations; in other cases, the system loses stability 
by divergence, followed at higher flows  
by oscillations in the plane of divergence or perpen-
dicular to it, again periodic, quasiperiodic or 
chaotic. See, e.g., Fig. 9. 

 

 
Figure 9: Pipe free-end displacement viewed from 
above for quasiperiodic oscillations of a cantile-
vered pipe with additional spring support. 

The dynamics in the presence of an end-mass, 
rather than a spring support, was also revisited  
 (Modarres-Sadeghi et al. 2007b). Typically, in one  



  

case, a sequence of periodic, quasiperiodic and  
chaotic oscillations, followed by 3-D quasiperiodic 
and chaotic motions, was observed. See, e.g., 
Fig. 10. 
 

 
Figure 10: Pipe free-end displacement as in Fig. 9 
for quasiperiodic oscillations of a cantilevered pipe 
with an end-mass. 

For both variants of the system, it is clear that  
the post-critical dynamics of the system (the dynam-
ics beyond the threshold of the first instability) is 
very rich: 2-D and 3-D oscillatory motions, peri-
odic, quasiperiodic or chaotic, following loss of 
stability by static divergence or flutter. Moreover, 
the bifurcations beyond the first one are often asso-
ciated with distinctive changes in the  modal form, 
amplitude and/or frequency of the motion. It is also 
clear that further and more systematic exploration of 
the parameter space would yield rich rewards in 
terms of interesting dynamical behaviour. 

6. CANTILEVERS WITH INTERNAL AND 
EXTERNAL FLOW 

A considerable amount of work was conducted 
on this topic; see, e.g. Hannoyer and Païdoussis 
(1978), Païdoussis and Besançon (1983), Wang and 
Bloom (1999). Mostly, the internal and external 
flows were considered to be independent of each 
other. Recently, however, a case where the outer 
flow is actually the reversed inner flow has been 
studied. This problem (Fig. 11(a)), an idealized 
model for a drilling system with a floating drill-bit 
(Fig. 11(b)), was initially tackled by Luu (1983). 

It was later re-studied as a fundamental problem  
involving a reverse external axial flow, which could 
also find applications in MEMS/nanotechnology as 
a system in which the damping could be control-
lably small by approaching the flutter threshold,  
advantageously lying at rather low flow velocities 
(Païdoussis et al. 2008). 

 

6.1  Cantilever subjected to external axial flow 

The equations of motion of a cantilever in axial 
flow, in its simplest form, may be written as  
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where M is the virtual (or added) mass of the fluid 
per unit length associated with lateral movements of 
the cylinder, and  Fv  stands for terms associated 
with transverse and longitudinal viscous forces and 
a base drag acting on the cylinder per unit length — 
not given explicitly here for simplicity (Païdoussis 
2004). Thus, the equation of motion is quite similar 
to (2) for internal flow, apart from the viscous 
terms, though the meaning of M is quite different. 

 
Figure 11: (a) The cantilevered pipe conveying fluid 
which, after discharge, reverses direction and flows 
over the pipe on the outside in the annulus. (b) dia-
gram of a drill-string with floating drill-bit (from 
Den Hartog 1969). 

The boundary conditions are the same — particu-
larly zero shear and bending moment at the free end 
— if the cantilever is cut "square" at x = L, i.e. if the 
free end is very blunt. If, on the other hand, there is 
a tapered, streamlined downstream end, there is a 
shear force at x = L, which in its simplest form may 
be written as  
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where (1/ ) ( ) ,
L

e L l
x A A x dx l

−
= ∫ being the length of 

the tapered end, and f is a slenderness/streamlining 
parameter for the tapered end; if it is well stream-
lined, 1;f →  if it is blunt, then 0.f →  

The nonlinear dynamics of this problem has     
recently been studied in a three-part paper  
(Païdoussis et al. 2002; Lopes et al. 2002; Semler 
et al. 2002), re-examining along the way the linear 
and physical dynamics which had been studied  
before, by Païdoussis (1966a,b, 1973). 

The linear dynamics of this system is as  
follows: the system with a tapered free end gener-
ally loses stability by divergence (buckling) and at 
higher flows develops flutter. If the end is blunt, 
however, divergence does not occur, similarly to a 
cantilevered pipe conveying fluid, precisely because 
of the absence of the tapered end. Unlike the pipe, 
however, which is "naturally" blunt-ended, a blunt 
cantilever in external flow is immune to flutter also, 
but for different reasons; in this case, though the lift 
force is high, there is also a base drag associated 
with the blunt end, which results in suppressing flut-
ter (Païdoussis et al. 2002). 

More specifically, the divergence may be under-
stood via the time-independent form of (8),  
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There is a lift generated at the tapered end, akin to 
the lift on a delta wing (Triantafyllou 1998). If 

0,f =  however, this lift vanishes, and with it the 
divergence. 

Similarly, the work done by the fluid on the cyl-
inder in a putative cycle of oscillation is  
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For a streamlined end, most of the energy input is 
due to the first, inviscid term. For a blunt end 
( 0, 1),bf c= ≥  the second term is sufficiently 
large to cancel the large energy input due to the 
first term; note the difference in sign of the 

2[ ]L
M U w w′ terms in the first and second terms of 
equation (10). [Interestingly, for a highly stream-
lined end ( 1, 0),bf c= =  all the energy input 
comes from the frictional terms!] 

6.2 Dynamics of the reversing flow system 

The discussion in Section 6.2 was for external ax-
ial flow, from the clamped end towards the free end 
of the cantilever. In the case of Fig. 11(a), however, 
the external axial flow is from the free end towards 
the clamped one.  

The dynamics of the system in Fig. 11(a) proved 
to be quite interesting. The behaviour with increas-
ing flow could be of two distinct types.  

(a) For a wide enough annular channel, the exter-
nal up-flow velocity, ,oU  is much smaller than that 
of the internal one, .iU  Accordingly, the dynamics 
of the system is controlled by the internal flow. For 
relatively small flow velocities, therefore, the sys-
tem is increasingly damped as iU  is increased; see 
(i) in the first paragraph of Section 2 (though even-
tually of course, the trend would be reversed, as 
described in the foregoing).  

(b) For a narrow enough annular passage, 
,o iU U>  and the dynamics is controlled by the ex-

ternal flow, the effect of which is destabilizing, in a 
similar way as for the aspirating pipe, and the sys-
tem is subject to increasing negative damping as the 
flow velocity is increased. 

In this case, for a small enough ,iU  
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which, clearly, can be positive. Indeed, for an elas-
tomer tube with  Do = 15.7 mm,  Di = 9.525 mm, 
L = 443 mm in a cylindrical channel of diameter  
Dch  such that Dch /Do = 1.2, with water flow, the 
system loses stability at a dimensionless flow  
velocity 

1/ 2( / ) 0.25i i iu M EI U L= =  

which corresponds to 0.18iU = m/s only. 
Thus, theoretically at least, one can conceive of 

this as a system which, when attached to another 
(e.g. a MEMS-type microcantilever) can be used to 
generate a controllably low overall damping, thus a 
high Q factor, and do so at relatively low flow     
velocities, which makes it suitable for such opera-
tions (with small power requirements). 

An experimental programme has been initiated at 
McGill to validate the theoretical findings and     
explore further the practicability of such devices for 
biomolecular detection and AFM (atomic force   
microscopy).  



  

7. CONCLUSION 
The dynamics of cantilevered pipes conveying 

fluid and cylinders in axial flow was reviewed and 
some new work described, putting the stress on 
physical behaviour, rather than on the underlying 
mathematical and numerical work. Specifically, the 
following were presented: 
(i) some work on the nature of the compressive 

force in cantilevered pipes discharging fluid; 
(ii) the crab-walk-type progress of work on the    

dynamics of aspirating pipes (now this way, 
now that), coming full circle from the original 
assertion in 1985 that the system loses stability 
at infinitesimal flow velocities (in the absence 
of dissipation) to much the same conclusion in 
2008; 

(iii) some exciting new work on the nonlinear dy-
namics of pipes conveying fluid when enhanced 
by additional spring supports or an end-mass; 

(iv) the dynamics of pipes subjected to internal flow 
which then reverses direction and flows axially 
over the exterior of the pipe. 

This work, and its natural extensions across kin-
dred areas of Applied Mechanics (Païdoussis 2008), 
continues yielding new challenges and new insights, 
as well as becoming increasingly useful for engi-
neering applications. 
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