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ABSTRACT

The fluid-structure interaction of turbulent wind
is investigated with regards to the transition from
pre-critical to post-critical response state. In the
frequency-domain, aeroelastic forces due to aero-
dynamic stiffness and damping are commonly
linked to linear terms of displacements and veloc-
ities, with so-called flutter derivatives as connect-
ing parameters. Validity of the linearized model
and its non-linear enhancement is discussed. Dif-
ferent interpretations of the self-excited forces,
used with different experimental techniques for
determination of flutter derivatives, are reviewed.
The aeroelastic behaviour is illustrated by data
from wind tunnel tests of a bridge girder and on
a bluff bridge-like cross-section. The article ex-
amines the adaptability of the non-linear model
under conditions of drastical amplitude growth.
The principal mechanical modes of heave and tor-
sion are decoupled. The coupling of the complete
aeroelastic system is caused by the flow-structure
interaction forces.

1. INTRODUCTION

Slender line-like structures, such as long cable-
supported bridges and light footbridges have typ-
ically low eigen-frequencies and low damping,
and are therefore sensitive to wind loading. Once
such a structure starts to vibrate, a complex in-
teraction between the moving boundary and the
airflow takes place, which may either effectively
attenuate or reinforce the driving force of the
wind. Because of the absence of closed forms
of analytical solutions for flow-induced pressures
and forces on complicated shapes of box- or
beam/plate or truss girders as in Figure 1, fluid-
structure interaction in case of bridges is nor-
mally assessed experimentally, in wind tunnel in-
vestigations with a sectional model. The results

Figure 1: Section model of the bridge girder.

obtained are then projected to full-scale condi-
tions, using mathematical models of various lev-
els of complexity, e.g. by considering a pair of
most important vertical and torsional modes, or
carrying out a multi-mode aeroelastic analysis,
see Scanlan (1992).

From the theoretical point of view, the fluid-
structure-interaction leads to the origin of non-
conservative forces contributing the to stiffness
matrix and in the same time to the origin of
forces influencing the damping matrix in linear
and non-linear way. On the linear level two par-
allel, time and frequency ways can be formu-
lated and investigated, see e.g. Caracoglia (2003).
The frequency domain analysis is based on a well
known approach. In the time domain formula-
tion of self-excited forces on a bridge deck, indi-
cial functions are adopted, see e.g. Costa (2007).
The majority of the models have however either
obvious or hidden linear character being based
on various types of convolution formulations or
other superposition related principles. This is
the reason why the analyses have revealed rela-
tively considerable diversity of conclusions in the
basic terminology as well as in results based on
experimental studies. Therefore it is important,
regarding the reliability of the system, to analyse
also the post critical system behavior, which can-
not be represented using the linear approach only.
Non-linear processes in the post critical regime



are decisive from the point of view of a possible
restabilization of the system due to non-linear
forces, while linear configuration would lead to
infinitely rising response due to positive real part
of at least one eigen-value of the system matrix.

2. AEROELASTIC EQUATIONS

Fluid-structure interaction of turbulent flow and
oscillating sectional bridge models of width B
(see Figure 1) with two degrees of freedom z
(heave) and θ (torsion) is often represented as
a coupled system of inertial forces FI(t), viscous
damping forces FC(t) and elastic stiffness forces
FK(t) of the structural part, buffeting forces FB

due to wind gusts including resonance and aeroe-
lastic forces Fae = [Lae Mae]T due to flow-
structure interaction as shown in following equa-
tion:

FI + FC + FK =

M · üT + C · u̇T + K · uT =

FB(t) + [Lae(u, u̇, t),Mae(u, u̇, t)]T (1)

where u = (z, θ) is the vector of generalized
displacements. In a mixed frequency and time-
domain representation, the aeroelastic forces in
vertical directions Lae and the aeroelastic mo-
ment Mae due to aerodynamic stiffness and aero-
dynamic damping contributions are commonly
linked to linear terms of girder displacements and
velocities via so-called flutter derivatives. The
flutter derivatives are non-dimensional functions
of reduced wind speed ured = U/fB, or reduced
frequency, k = 2πfB/U = 2π/ured.

The aeroelastic strip forces after Scanlan
(1992) for a two-dimensional representation are
listed in the following equations:
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Here, q is the mean stagnation pressure in bridge
height. According to this formula, the relation-
ship between structural deformations, z and θ,
and velocities, ż and θ̇, in the two dimensional
case, and the associated aeroelastic lift Lae and
the overturning moment Mae per unit length can
be formulated in terms of the flutter derivatives
H∗

i or A∗
i , i = 1, 2. . .4.

Figure 2: Standard deviation of the heave ampli-
tudes over the reduced velocities ured,h = u/(Bfh)

Such solution, however, is linear and can be
used to investigate the transition and especially
post-critical state only with certain limitations.
It is also mathematically problematic, as it works
as the combined time/frequency system. One of
the possibilities to avoid this, is to consider the
lifting force and the moment as a certain func-
tions of generalized displacement z, rotation θ,
and their derivatives. For the linear parts expres-
sions as for example in equation (2) can be used.
The non-linear parts can be assumed in a form of
a third degree polynomial. This represents a nat-
ural extension of the linear approach multiplying
that by an Eulerian homogeneous function of the
second degree. This formulation results from the
experience with experimental investigations in a
wind channel performed in post-critical regimes.
With the adoption of the approach theoretically
analyzed in Náprstek et al (2008) the the formu-
las for lift and moment can be written as:

Lae = qBm (1 − βzzz
2 − βzθθ

2) ·
(bzz ż + bzθθ̇ + czzz + czθθ) (4)

Mae = qB2J/2 (1 − βθzz
2 − βθθθ

2) ·
(−bzz ż + bθθθ̇ − cθzz + cθθθ) (5)

in which m is the mass and J is the mass moment
of inertia of the cross-section. The coefficients β,
b and c, the counterparts of flutter derivatives,
shall be determined experimentally. Because
higher degrees are hardly to be identified exper-
imentally and problematic from a physical point
of view, only the first and third degree forms are
meaningful in the equations (4) and (5). The sec-
ond degrees, on the other hand, can be avoided
due to cross-section symmetry. The whole sys-
tem (1) then represents a deterministic synthesis
of generalized Van der Pol and Duffing types of
non-linear equations. Briefly summarized; from



Figure 3: Contribution of the full aeroelastic sys-
tem to the deformation energy of the heave mode
in terms of the distribution of variances.

the physical point of view the above model sep-
arates aeroelastic effects into two groups: (i) a
linear part represented by non-conservative and
gyroscopic forces producing non-symmetric char-
acter of the operator and therefore being respon-
sible for the stability loss; (ii) a third degree part
characterizing the system behavior in the post-
critical state.

3. CRITICAL STATE

Critical velocities identified by tests in turbulent
flow can in the majority of the cases be accepted
as a reference value for the bridge behaviour in
full scale. A turbulent flow generated in a bound-
ary layer wind tunnel is used to represent wind
in the neutral atmosphere. The ambient oscil-
lations of a section model of a bridge girder are
then examined increasing the wind speed step-
wise, until violent responses develop. Figure 1
shows a section model constructed to test the
aeroelastic performance of the mid span of the
new Rhine crossing near Wesel. The section
model is equipped with all aerodynamically rele-
vant details, including railings with screens and
balustrades and a central barrier. The model
is mounted on a set of springs which are tuned
to produce an appropriate relation of the modal
stiffnesses. The eigen-frequencies of the two
modes as well as other important parameters are
scaled with regard to the test wind speeds and
the scaling of geometry and mass. As in many
applications, the deformability in horizontal di-
rections is restrained.

Snap-back tests are conducted in still air to
identify frequencies and damping in terms of lin-
earized approximations. The damping of such
a model is typically amplitude dependent, but
at small amplitudes a certain viscous range can

Figure 4: Heave and pitch frequency as the func-
tion of the reduced velocities ured,h = u/(Bfh)

usually be established. In turbulent flow, the
model is performing stochastic oscillations when
the flow speed and the associated excitation force
are sufficiently high. As the response amplitudes
are small at low reduced velocities in the non-
critical range, see Figure 2, their squares in the
first brackets in equation (4) and (5) will not
dominate the response but remaining small un-
less larger amplitudes are generated. The struc-
ture of the terms in the second brackets is compa-
rable to the traditional linearized approach. The
coefficients bij , cij , i, j = z, θ, of this part of the
model will be frequency dependent and can be
practically expressed through flutter derivatives
and be identified e.g. from free vibration tests
on sectional models. Figure 2 shows the develop-
ment of dominant frequencies in the scanned time
histories of heave and torsion for test series with
subsequently increased reduced velocity ured. In
turbulent flow, the model is performing stochas-
tic oscillations with possible resonant amplifica-
tions if the Scruton number (Sc) of the model is
limited to a suitable low level. It is found that the
coupling of the aeroelastic system becomes visible
at further increasing reduced velocities through
the frequency signal of a new mode of the cou-
pled aeroelastic system which is visible also in
the heave spectral density. The new mode devel-
ops from the torsional degree of freedom as it can
be understood from the decaying eigenfrequency
of torsion shown in Figure 4. Violent responses
occur when the flow speed in the wind tunnel is
near to, or identical to the critical velocity. Pure
heave is damped out, and periodic oscillations are
performed in the coupled mode shape consisting
of both heave and torsional component. The va-
lidity of the equations (2) and (3) is limited to
this range. The amplitudes grow drastically for
ured > ured,crit as it is observed in experiments,
e.g. Náprstek et al (2008), so that the squares of



Figure 5: Estimated girder A∗ derivatives.

the amplitudes and the coefficients βij , i, j = z, θ
can gain importance.

4. PROSPECTIVE OF
EXPERIMENTAL POSSIBILITIES

Many different and also related methodologies for
the identification of aeroelastic systems and the
respective authors are compiled in Table 1. Fur-
ther contributions are also known e.g. by Diana,
Hjorth-Hansen, Matsumoto and others. The ad-
vantages and disadvantages of analysing ambient
data are beside others that the natural coupling
between vertical and torsional motion and the in-
fluence of turbulence are preserved. The methods
are applicable to wind tunnel data and full scale
tests. The effect of noise is present but 70% of
the values of a derivative meet an interval of 8%
(smooth) and 19% (turbulent). A further dis-
advantage is that effects of size of motion and
of the mean angle of attack of the flow are dif-
ficult to be separated. In the Figures 5 and 6
various calculated derivatives of the cross section
are shown. The time series are measured from a
2DOF system oscillating in a flow with a turbu-
lence intensity of Iu = 3%. The heave and torsion
frequencies in still air are 2.44 Hz and 4.49 Hz
respectively. The aerodynamic derivatives are
determined by author SL applying the Covari-
ance Block Hankel Matrix method (CBHM) af-
ter Brownjohn & Bogunovic-Jakobsen (2001).

Clear results are found e.g. for the derivatives
H∗

3 and A∗
3. Some identified derivatives have a

large scattering although the results are calcu-
lated from repeated experiments. This can be an
indication that the linear model of the aeroelas-
tic subsystem has deficiencies. Nonlinear mod-
elling promises an improvement in such cases.
A step forward can be the use of the forced mo-
tion method where the motion of the structure is
controlled and can generate associated aeroelas-

Figure 6: Estimated girder H∗ derivatives.

Figure 7: Forced motion mechanism as used by
author RH at the Danish Maritime Institute,
Lyngby, Denmark (Force AG), and model of the
girder fixed at the forced motion mechanism.

tic forces. An example of such control mechanism
is shown in Figure 7. The evaluation of flow-
induced forces is not only straightforward within
a linear approach as here aeroelastic forces re-
lated to mass and stiffness are linked to a cosinu-
soidal term and damping related components are
linked to a sinusoidal term. Advantages are ex-
pected also in case of the adaption of a non-linear
approach with squared components in terms of
the amplitude as the scattering of the ampli-
tudes evaluated from respective experiments re-
main very small, and the important components
of the bias are known (see Figure 4) or can be
controlled. A similar mechanism is constructed
at present at the Building Aerodynamics Labo-
ratory at Bochum and shall be put into action
for further investigations. An another example is
shown on the Figures 10-11. It is related to the
large amplitude response of the bridge-like struc-
ture with rectangular cross-section and aspect ra-
tio 1:5 using a newly developed testing rig (Fig-
ure 9). By the system of mechanically indepen-



Figure 8: Known bias due to deviation of the
amplitude from the projected run of the curve.
(Taken from Hortmanns (1996))

Figure 9: New test rig used by authors for iden-
tification of non-linear aeroelastic coefficients.

dent adjustable torsional springs, the frequencies
of the girder can be tuned to theoretically ar-
bitrary values. The regular pressure oscillations
have been measured. The red (dash-dotted) lines
are the pressures on the top surface of the beam.
The blue (dashed) line represents the pressures
on the bottom face of the body. The positive
pressures are pointing out of the body. The Fig-
ure 10 represents the time shot, when the exces-
sive amplitude growth started during the transi-
tion through the critical (bifurcation) state. Es-
pecially rotation, a driving DOF, exceeded the
angle, where the linear assumptions are unsatis-
factory.

The pressures measured at the model surface
has been used for the identification of flutter
derivatives according to the procedure in Ric-
ciardelli (2002), where the coefficients are estab-
lished from the response of the model excited by
the wind and which uses the linear assumption
as in equations (2) and (3). Figure 11 represents
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Figure 10: Snapshots of large amplitudes oscilla-
tion the beam during one period.
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Figure 11: Heave (left) and pitch (right) response
of the bridge model in post-critical range.

the results of comparison of the left-hand side
with the right-hand side of the equation (1). In
the case of heave, the experimentally determined
(red line) forces perfectly matches the left-hand
side of the equation (blue line), whereas in the
case of rotational movement, the difference due
to using just linear identification procedure is ap-
parent.

5. CONCLUSIONS

Based on the frequency analysis of the time se-
ries of the monitored degrees of freedom heave
and flutter the phenomena of aeroelastical cou-
pling with increasing reduced velocities can be
described as a successive development of a new
mode consisting from coupled torsional and heave
motions with phases of decreasing band width
from the previously (aeroelastically) uncoupled
torsional and heave modes. A sequence of power
spectra, each evaluated at increasing levels of the
reduced velocity shows the successive growth of
the energy contribution of the new mode to both,
the power spectra of the heave signals and of the
signals of the rotation. At the critical velocity the
original heave mode is strongly damped and not
reflecting into the power spectrum of flutter os-
cillations. Such behaviour must be included into



Authors Year Name
Klöppel & Thiele 1967 Formbeiwerte
Scanlan 1970 Scanlan methods. later important extensions
Shinozuka 1982 ARMA method
Yamada & Ichikawa 1992 Extended Kalman Filter
Poulsen 1992 Control theory & system identification
Zasso et al., Ljung 1996 Transfer function analysis, PEM
Jakobsen et al. 1995, 2001, 2003 CBHM1, CPS
Sarkar, Scanlan et al. 1992, 1994, 2004, 2005 MITD, RFA
Bartoli, Righi et al. 2004, 2006 CSIM
Gu et al. 2001, 2006 Unified leastsquares approach

Table 1: Procedures for the identification of aeroelastic systems. CBHM 1 method is used here.

the representation through flutter coefficients.
The paper examines the adaptability of the

non-linear model under conditions of drastical
amplitude amplitude growth. The main idea is to
adapt quasi-stationary β-coefficients as they be-
come active at high wind velocities where often
a quasi-stationary structure of models of fluid-
structure interaction is adopted through experi-
ments. The experimental method of free vibra-
tion tests cannot deliver suitable data as in reg-
ular the model oscillations grow too large in the
post-critical range and can harm the test equip-
ment. A second, principal drawback of the free
vibration method is that the measured ampli-
tudes of heave and torsion are aeroelastically cou-
pled by strong stochastic nature what requires
a stochastic identification procedure with associ-
ated difficulties of accuracy. It seems more suited
to implement a forced-motion test, Höffer (2007).
Here, heave and torsion amplitudes are defined
for each harmonical oscillation in a single fre-
quency. Also coupled motions are possible.

The more advanced ”non-linear” identification
procedures must be employed in order to iden-
tify the aeroelastic coefficients introduced in the
proposed non-linear model. The realized exper-
iments on the newly developed experimental fa-
cilities and test rigs will be focusing on that.
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